A rhodium catalyzed direct regioselective oxidative annulation by double C-H activation is described to synthesize highly substituted quinolones from pyridones. The reaction proceeds at mild conditions with broad scope and wide functional group tolerance. These novel quinolones were explored to recognize nitroaromatic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b01932 | DOI Listing |
Molecules
January 2025
School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China.
Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
The development and enantioselective synthesis of two types of -symmetric spirobi[dihydrophenalene] structures is reported. The reaction proceeds via rhodium-catalyzed 2-fold asymmetric conjugate arylation of dienones followed by BF·OEt-promoted spirocyclization to give the enantiopure spiro products. Additive-dependent chemodivergent synthesis of 3,3'-diarylated 2,2',3,3'-tetrahydro-1,1'-spirobi[phenalene]-9,9'-diols (3,3'-Ar-SPHENOLs) and the corresponding spiro diary ethers from the same intermediate is achieved.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Inst Org Chem, State Key Lab Organometallic Chem, 345 Lingling Lu, 200032, Shanghai, CHINA.
Rhodium-catalyzed regio- and enantioselective allylic arylation of racemic alkyl- and aryl- substituted allylic carbonates with arylboronic acids using commercially available BIBOP ligand is reported. This reaction proceeds at room temperature without base or other additive to deliver allylic arylation products in excellent yields, regio- and enantioselectivity (up to 95% yield, >20:1 b/l, >99% ee). Rh/BIBOP is disclosed as an efficient catalytic system for allylic substitution reaction.
View Article and Find Full Text PDFOrg Lett
January 2025
Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States.
General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Department of Chemistry, 1 Tsinghua Yuan, 100084, Beijing, CHINA.
Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!