Identification of genes associated with castration‑resistant prostate cancer by gene expression profile analysis.

Mol Med Rep

Department of Urology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450014, P.R. China.

Published: November 2017

Prostate cancer (CaP) is a serious and common genital tumor. Generally, men with metastatic CaP can easily develop castration‑resistant prostate cancer (CRPC). However, the pathogenesis and tumorigenic pathways of CRPC remain to be elucidated. The present study performed a comprehensive analysis on the gene expression profile of CRPC in order to determine the pathogenesis and tumorigenic of CRPC. The GSE33316 microarray, which consisted of 5 non‑castrated samples and 5 castrated samples, was downloaded from the gene expression omnibus database. Subsequently, 201 upregulated and 161 downregulated differentially expressed genes (DEGs) were identified using the limma package in R and those genes were classified and annotated by plugin Mcode of Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery and KEGG Orthology Based Annotation System 2.0 online tools to investigate the function of different gene modules. The BiNGO tool was used to visualize the level of enriched GO terms. Protein‑protein interaction network was constructed using STRING and analyzed with Cytoscape. In conclusion, the present study determined that aldo‑keto reductase 3, cyclin B2, regulator of G protein signaling 2, nuclear factor of activated T‑cells and protein kinase C a may have important roles in the development of CRPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865838PMC
http://dx.doi.org/10.3892/mmr.2017.7488DOI Listing

Publication Analysis

Top Keywords

prostate cancer
12
gene expression
12
castration‑resistant prostate
8
expression profile
8
pathogenesis tumorigenic
8
gene
5
crpc
5
identification genes
4
genes associated
4
associated castration‑resistant
4

Similar Publications

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Purpose: Our objective was to identify the dosimetric parameters and prostate volume that most accurately predict the incidence of acute and late gastrointestinal (GI) and genitourinary (GU) toxicity in prostate cancer stereotactic ablative radiotherapy (SABR) treatments.

Methods: We conducted a retrospective analysis of 122 patients who received SABR for prostate cancer at our clinic between March 2018 and September 2022 using a five-fraction SABR regimen. The existing plans of these patients were re-evaluated according to our institutional protocols (Hacettepe University [HU-1] and HU-2) as well as PACE‑B, RTOG 0938, and NRG GU005 dose-volume constraints.

View Article and Find Full Text PDF

Background: This study aims to evaluate the capabilities and limitations of large language models (LLMs) for providing patient education for men undergoing radiotherapy for localized prostate cancer, incorporating assessments from both clinicians and patients.

Methods: Six questions about definitive radiotherapy for prostate cancer were designed based on common patient inquiries. These questions were presented to different LLMs [ChatGPT‑4, ChatGPT-4o (both OpenAI Inc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!