A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Survey design for precise fire management conservation targets. | LitMetric

Survey design for precise fire management conservation targets.

Ecol Appl

School of Ecosystem and Forest Sciences, University of Melbourne, 4 Water Street, Creswick, Victoria, Australia.

Published: January 2018

Common goals of ecological fire management are to sustain biodiversity and minimize extinction risk. A novel approach to achieving these goals determines the relative proportions of vegetation growth stages (equivalent to successional stages, which are categorical representations of time since fire) that maximize a biodiversity index. The method combines data describing species abundances in each growth stage with numerical optimization to define an optimal growth-stage structure that provides a conservation-based operational target for managers. However, conservation targets derived from growth-stage optimization are likely to depend critically on choices regarding input data. There is growing interest in the use of growth-stage optimization as a basis for fire management, thus understanding of how input data influence the outputs is crucial. Simulated data sets provide a flexible platform for systematically varying aspects of survey design and species inclusions. We used artificial data with known properties, and a case-study data set from southeastern Australia, to examine the influence of (1) survey design (total number of sites and their distribution among growth stages) and (2) species inclusions (total number of species and their level of specialization) on the precision of conservation targets. Based on our findings, we recommend that survey designs for precise estimates would ideally involve at least 80 sites, and include at least 80 species. Greater numbers of sites and species will yield increasingly reliable results, but fewer might be sufficient in some circumstances. An even distribution of sites among growth stages was less important than the total number of sites, and omission of species is unlikely to have a major influence on results as long as several species specialize on each growth stage. We highlight the importance of examining the responses of individual species to growth stage before feeding survey data into the growth-stage optimization black box, and advocate use of a resampling procedure to determine the precision of results. Collectively, our findings form a reproducible guide to designing ecological surveys that yield precise conservation targets through growth-stage optimization, and ultimately help sustain biodiversity in fire-prone systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.1624DOI Listing

Publication Analysis

Top Keywords

conservation targets
16
growth-stage optimization
16
survey design
12
fire management
12
growth stages
12
growth stage
12
total number
12
species
9
sustain biodiversity
8
input data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!