Probing the internal micromechanical properties of biofilms by Brillouin imaging.

NPJ Biofilms Microbiomes

Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2BZ United Kingdom.

Published: September 2017

Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the biofilm. In this study, we have applied Brillouin microscopy, a technique that is capable of measuring mechanical properties of specimens on a micrometre scale based on the shift in frequency of light incident upon a sample due to thermal fluctuations, to investigate the micromechanical properties of an active, live biofilm. Using this non-contact and label-free technique, we have extracted information about the internal stiffness of biofilms under continuous flow. No correlation with colony size was found when comparing the averages of Brillouin shifts of two-dimensional cross-sections of randomly selected colonies. However, when focusing on single colonies, we observed two distinct spatial patterns: in smaller colonies, stiffness increased towards their interior, indicating a more compact structure of the centre of the colony, whereas, larger (over 45 μm) colonies were found to have less stiff interiors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591272PMC
http://dx.doi.org/10.1038/s41522-017-0028-zDOI Listing

Publication Analysis

Top Keywords

micromechanical properties
8
probing internal
4
internal micromechanical
4
properties biofilms
4
biofilms brillouin
4
brillouin imaging
4
imaging biofilms
4
biofilms organised
4
organised aggregates
4
aggregates bacteria
4

Similar Publications

Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e.

View Article and Find Full Text PDF

Thermal oxidation has a significant effect on the durability of bitumen composites reinforced with carbon nanomaterials. However, the mechanisms of aging resistance and the effect of aging on the chemical properties, morphology, micromechanical properties, and rheology of bitumen with carbon nanomaterials are still unclear. This study investigated the mechanisms of aging resistance underlying the synergistic effects of graphene and carbon nanotubes (CNTs) on the durability of bitumen composites.

View Article and Find Full Text PDF

Bone is a highly heterogeneous and anisotropic material with a hierarchical structure. The effect of diaphysis locations and directions of loading on elastic-plastic compressive properties of bovine femoral cortical bone was examined in this study. The impact of location and loading directions on elastic-plastic compressive properties of cortical bone was found to be statistically insignificant in this study.

View Article and Find Full Text PDF

Strong, ductile, and hierarchical hetero-lamellar-structured alloys through microstructural inheritance and refinement.

Proc Natl Acad Sci U S A

January 2025

Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.

The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.

View Article and Find Full Text PDF

Relationship Between Elastic, Chemical, and Thermal Properties of SiO Flint Aggregate.

Molecules

December 2024

Department of Chemistry, Faculty of Science, Cadi Ayyad University, Marrakech 40000, Morocco.

Understanding the relationship between elastic, chemical, and thermal properties is essential for the prevention of the behavior of SiO flint aggregates during their application. In fact, the elastic properties of silica depend on chemical and heat treatment. In order to identify the crystallite sizes for natural SiO before and after chemical treatment samples, Williamson-Hall plots and Scherer's formulas are used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!