Introduction: The management of posttraumatic cerebrospinal fluid (CSF) rhinorrhoea remains a clinical challenge. Cerebrospinal fistula is a dural defect responsible for possible CSF leakage into the contiguous air-filled cavities located at the skull base. The risk of central nervous system infection in these conditions is severe and can be life threatening. Consequently, a specific CSF biomarker might be used in case of difficult diagnosis of CSF rhinorrhoea. CSF Tau protein is a neuronal protein, commonly assessed for diagnosis of Alzheimer Disease (AD). The aim of this study was to determine whether the Tau protein could be a relevant marker of CSF leakage.

Materials And Methods: Tau protein measurement was performed by enzyme-linked immunosorbent assay in 13 patients with CSF leakage (CSF rhinorrhoea group), and 8 patients with spontaneous aqueous rhinorrhoea (non-CSF leakage group). The serum concentration of Tau protein was measured by ELISA in both CSF rhinorrhoea group and non-CSF leakage group.

Results: In patients with CSF leakage, CSF Tau protein median concentration was 479 ng/L (197 - 2325 ng/L). On the other hand, the Tau protein concentration was below the lower limit of quantification (LLoQ) (< 87 ng/L) in non-CSF leakage group. Serum Tau protein concentration by ELISA was also below LLoQ (< 87 ng/L) for all subjects.

Conclusion: ELISA measurement of Tau protein in rhinorrhoea fluid may be a reliable and relevant marker for detecting the presence of CSF in the nasal discharge and sign the existence of a CSF leakage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575651PMC
http://dx.doi.org/10.11613/BM.2017.030703DOI Listing

Publication Analysis

Top Keywords

tau protein
36
csf rhinorrhoea
16
csf leakage
16
csf
13
cerebrospinal fluid
12
non-csf leakage
12
tau
9
protein
9
leakage
8
csf tau
8

Similar Publications

While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.

View Article and Find Full Text PDF

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

Synapse dysfunction is an early event in Alzheimer's disease (AD) caused by various factors such as Amyloid beta, p-tau, inflammation, and aging. However, the exact molecular mechanism of synapse dysfunction in AD is largely unknown. To understand this, we comprehensively analyzed the synaptosome fraction in postmortem brain samples from AD patients and cognitively normal individuals.

View Article and Find Full Text PDF

Background: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.

View Article and Find Full Text PDF

Unlabelled: As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!