Peat represents a globally significant pool of sequestered carbon. However, peatland carbon stocks are highly threatened by anthropogenic climate change, including drought, which leads to a large release of carbon dioxide. Although the enzymatic mechanisms underlying drought-driven carbon release are well documented, the effect of drought on peatland microbial communities has been little studied. Here, we carried out a replicated and controlled drought manipulation using intact peat 'mesocosm cores' taken from bog and fen habitats, and used a combination of community fingerprinting and sequencing of marker genes to identify community changes associated with drought. Community composition varied with habitat and depth. Moreover, community differences between mesocosm cores were stronger than the effect of the drought treatment, emphasising the importance of replication in microbial marker gene studies. While the effect of drought on the overall composition of prokaryotic and eukaryotic communities was weak, a subset of the microbial community did change in relative abundance, especially in the fen habitat at 5 cm depth. 'Drought-responsive' OTUs were disproportionately drawn from the phyla Bacteroidetes and Proteobacteria. Collectively, the data provide insights into the microbial community changes occurring alongside drought-driven carbon release from peatlands, and suggest a number of novel avenues for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595961 | PMC |
http://dx.doi.org/10.1038/s41598-017-11546-w | DOI Listing |
Lipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Mol Med
January 2025
Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
Purpose Of Review: The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy.
View Article and Find Full Text PDFCommun Biol
January 2025
Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.
Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!