Urea deep placement reduces yield-scaled greenhouse gas (CH and NO) and NO emissions from a ground cover rice production system.

Sci Rep

Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, D-82467, Garmisch-Partenkirchen, Germany.

Published: September 2017

Ground cover rice production system (GCRPS), i.e., paddy soils being covered by thin plastic films with soil moisture being maintained nearly saturated status, is a promising technology as increased yields are achieved with less irrigation water. However, increased soil aeration and temperature under GCRPS may cause pollution swapping in greenhouse gas (GHG) from CH to NO emissions. A 2-year experiment was performed, taking traditional rice cultivation as a reference, to assess the impacts of N-fertilizer placement methods on CH, NO and NO emissions and rice yields under GCRPS. Averaging across all rice seasons and N-fertilizer treatments, the GHG emissions for GCRPS were 1973 kg CO-eq ha (or 256 kg CO-eq Mg), which is significantly lower than that of traditional cultivation (4186 kg CO-eq haor 646 kg CO-eq Mg). Furthermore, if urea was placed at a 10-15 cm soil depth instead of broadcasting, the yield-scaled GHG emissions from GCRPS were further reduced from 377 to 222 kg CO-eq Mg, as NO emissions greatly decreased while yields increased. Urea deep placement also reduced yield-scaled NO emissions by 54%. Therefore, GCRPS with urea deep placement is a climate- and environment-smart management, which allows for maximal rice yields at minimal GHG and NO emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595888PMC
http://dx.doi.org/10.1038/s41598-017-11772-2DOI Listing

Publication Analysis

Top Keywords

ghg emissions
16
urea deep
12
deep placement
12
greenhouse gas
8
emissions
8
ground cover
8
cover rice
8
rice production
8
production system
8
rice yields
8

Similar Publications

Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.

View Article and Find Full Text PDF

Assessing the ecological and economic transformation pathways of plastic production system.

J Environ Manage

January 2025

Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Economics and Rural Development, University of Pretoria, Pretoria, South Africa.

Plastic's incredible versatility drives its continuous production growth, contributing to 4.5% of global greenhouse gas (GHG) emissions. With an unsustainable 4% annual production growth rate, plastics' environmental impact is significant.

View Article and Find Full Text PDF

Exploring the synergistic effect of NaOH/NaClO absorbent in a novel wet FGD scrubber to control SOx/NOx emissions.

Environ Monit Assess

January 2025

International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.

View Article and Find Full Text PDF

Globally, more than 100 countries have adopted net-zero targets. Most studies agree on how this increases the chance of keeping end-of-century global warming below 2°C. However, they typically make assumptions about net-zero targets that do not capture uncertainties related to gas coverage, sector coverage, sinks, and removals.

View Article and Find Full Text PDF
Article Synopsis
  • A life cycle assessment evaluated the environmental impacts of polyethylene (PE) packaging compared to alternatives like paper, glass, aluminum, and steel in the U.S.
  • The study focused on five packaging applications and assessed various environmental impacts such as global warming potential (GWP), energy use, resources, and water scarcity.
  • Findings show that substituting PE for other materials can decrease life cycle GWP emissions by about 70%, offering significant benefits for packaging sustainability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!