Solving combinatorial optimization problems is challenging. Mapping onto the ground-state search problem of the Ising Hamiltonian is a promising approach in this field, where the components of the optimization set are modeled as artificial spin units. The search for a suitable physical system to realize these spin units is an active area of research. In this work, we have demonstrated a scheme to model the Ising Hamiltonian with multiferroic oxide/nanomagnet units. Although nanomagnet-based implementation has been shown before, we have utilized the magnetoelectric effect of the multiferroics to make voltagecontrolled spin units with less current flow in the network. Moreover, we have proposed a unique approach of configuring the coupling network of the system directly from the Ising Hamiltonian of a traveling salesman problem (TSP). We have developed a coupled micromagnetic simulation framework and solved TSPs of size 26-city and 15-city with an accuracy of 100% for the latter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595819 | PMC |
http://dx.doi.org/10.1038/s41598-017-11732-w | DOI Listing |
Phys Rev Lett
December 2024
C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, New York 11794, USA.
Phys Rev Lett
December 2024
Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
Optical simulators for the Ising model have demonstrated great promise for solving challenging problems in physics and beyond. Here, we develop a spatial optical simulator for a variety of classical statistical systems, including the clock, XY, Potts, and Heisenberg models, utilizing a digital micromirror device composed of a large number of tiny mirrors. Spins, with desired amplitudes or phases of the statistical models, are precisely encoded by a patch of mirrors with a superpixel approach.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
In the zoo of emergent symmetries in quantum many-body physics, the previously unrealized emergent spacetime supersymmetry (SUSY) is particularly intriguing. Although it was known that spacetime SUSY could emerge at the (1+1)d tricritical Ising transition, an experimental realization is still absent. In this Letter, we propose to realize emergent spacetime SUSY using reconfigurable Rydberg atom arrays featuring two distinct sets of Rydberg excitations, tailored for implementation on dual-species platforms.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China. Electronic address:
The constantly evolving world necessitates a brain that can swiftly adapt and respond to rapid changes. The brain, conceptualized as a system performing cognitive functions through collective neural activity, has been shown to maintain a resting state characterized by near-critical neural dynamics, positioning it to effectively respond to external stimuli. However, how near-criticality is dynamically modulated during task performance remains insufficiently understood.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China.
Quantum generative models have shown promise in fields such as quantum chemistry, materials science, and optimization. However, their practical utility is hindered by a significant challenge: the lack of interpretability. In this work, we introduce to enhance both the interpretability and controllability of quantum generative models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!