Two mosquitocidal bacteria, Bacillus thuringiensis subsp. israelensis (Bti) and Lysinibacillus sphaericus (Ls) are the active ingredients of commercial larvicides used widely to control vector mosquitoes. Bti's efficacy is due to synergistic interactions among four proteins, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, whereas Ls's activity is caused by Bin, a heterodimer consisting of BinA, the toxin, and BinB, a midgut-binding protein. Cyt1Aa is lipophilic and synergizes Bti Cry proteins by increasing midgut binding. We fused Bti's Cyt1Aa to Ls's BinA yielding a broad-spectrum chimeric protein highly mosquitocidal to important vector species including Anopheles gambiae, Culex quinquefasciatus, and Aedes aegypti, the latter an important Zika and Dengue virus vector insensitive to Ls Bin. Aside from its vector control potential, our bioassay data, in contrast to numerous other reports, provide strong evidence that BinA does not require conformational interactions with BinB or microvillar membrane lipids to bind to its intracellular target and kill mosquitoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596012PMC
http://dx.doi.org/10.1038/s41598-017-11717-9DOI Listing

Publication Analysis

Top Keywords

vector mosquitoes
8
cyt1aa ls's
8
vector
5
highly effective
4
effective broad
4
broad spectrum
4
spectrum chimeric
4
chimeric larvicide
4
larvicide targets
4
targets vector
4

Similar Publications

Role of extracellular vesicles in the pathogenesis of mosquito-borne flaviviruses that impact public health.

J Biomed Sci

January 2025

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.

Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.

View Article and Find Full Text PDF

Large-scale surveillance and informed vector control approaches are urgently needed to ensure that national malaria programs remain effective in reducing transmission and, ultimately, achieving malaria elimination targets. In South America, Anopheles darlingi is the primary malaria vector and is responsible for the majority of Plasmodium species transmission. However, little is known about the molecular markers associated with insecticide resistance in this species.

View Article and Find Full Text PDF

Factors associated with contracting border malaria: A systematic and meta-analysis.

PLoS One

January 2025

School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.

Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF

Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks.

BMC Public Health

January 2025

Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.

Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.

Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!