In sensory systems, a range of computational rules are presumed to be implemented by neuronal subpopulations with different tuning functions. For instance, in primate cortical area MT, different classes of direction-selective cells have been identified and related either to motion integration, segmentation or transparency. Still, how such different tuning properties are constructed is unclear. The dominant theoretical viewpoint based on a linear-nonlinear feed-forward cascade does not account for their complex temporal dynamics and their versatility when facing different input statistics. Here, we demonstrate that a recurrent network model of visual motion processing can reconcile these different properties. Using a ring network, we show how excitatory and inhibitory interactions can implement different computational rules such as vector averaging, winner-take-all or superposition. The model also captures ordered temporal transitions between these behaviors. In particular, depending on the inhibition regime the network can switch from motion integration to segmentation, thus being able to compute either a single pattern motion or to superpose multiple inputs as in motion transparency. We thus demonstrate that recurrent architectures can adaptively give rise to different cortical computational regimes depending upon the input statistics, from sensory flow integration to segmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595847PMC
http://dx.doi.org/10.1038/s41598-017-11373-zDOI Listing

Publication Analysis

Top Keywords

integration segmentation
12
recurrent network
8
visual motion
8
computational rules
8
motion integration
8
input statistics
8
demonstrate recurrent
8
motion
6
network dynamics
4
dynamics reconciles
4

Similar Publications

Background: Surgical fundoplication remains integral in managing gastroesophageal reflux disease (GERD) by addressing gastroesophageal valve incompetence. This study introduces a novel hybrid approach, the Eversion Cruroplasty and Collar Overwrap (ECCO) procedure, aiming to combine benefits of conventional partial wrapping and posteromedial cardiopexy, considering gastric fundus anatomical peculiarities as an anti-reflux barrier.

Methods: A retrospective analysis of pediatric patients presenting with refractory GERD from 2021 to 2023 was conducted.

View Article and Find Full Text PDF

An effective vessel segmentation method using SLOA-HGC.

Sci Rep

January 2025

Faculty of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.

Accurate segmentation of retinal blood vessels from retinal images is crucial for detecting and diagnosing a wide range of ophthalmic diseases. Our retinal blood vessel segmentation algorithm enhances microfine vessel extraction, improves edge texture clarity, and normalizes vessel distribution. It stabilizes neural network training for complex retinal vascular features.

View Article and Find Full Text PDF

The Insulated Gate Bipolar Transistor (IGBT) is a crucial power semiconductor device, and the integrity of its internal structure directly influences both its electrical performance and long-term reliability. However, the precise semantic segmentation of IGBT ultrasonic tomographic images poses several challenges, primarily due to high-density noise interference and visual distortion caused by target warping. To address these challenges, this paper constructs a dedicated IGBT ultrasonic tomography (IUT) dataset using Scanning Acoustic Microscopy (SAM) and proposes a lightweight Multi-Scale Fusion Network (LMFNet) aimed at improving segmentation accuracy and processing efficiency in ultrasonic images analysis.

View Article and Find Full Text PDF

This study utilizes the Breast Ultrasound Image (BUSI) dataset to present a deep learning technique for breast tumor segmentation based on a modified UNet architecture. To improve segmentation accuracy, the model integrates attention mechanisms, such as the Convolutional Block Attention Module (CBAM) and Non-Local Attention, with advanced encoder architectures, including ResNet, DenseNet, and EfficientNet. These attention mechanisms enable the model to focus more effectively on relevant tumor areas, resulting in significant performance improvements.

View Article and Find Full Text PDF

To enhance enterprises' interactive exploration capabilities for unstructured chart data, this paper proposes a multimodal chart question-answering method. Facing the challenge of recognizing curved and irregular text in charts, we introduce Gaussian heatmap encoding technology to achieve character-level precise text annotation. Additionally, we combine a key point detection algorithm to extract numerical information from the charts and convert it into structured table data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!