Small circular single-stranded DNA satellites, called betasatellites, have been found in association with some monopartite begomovirus infections. The Cotton leaf curl Multan betasatellite (CLCuMuB) is known to influence symptom induction in cotton leaf curl disease. CLCuMuB contains a single gene, βC1, whose product is a pathogenicity determinant and a suppressor of RNA silencing. Although induction of RNA silencing by RNA and DNA viruses has been well documented in plants, the interactions between betasatellites and the host's silencing machinery remain poorly understood. In this study, the transgenic expression of βC1 from CLCuMuB in Arabidopsis thaliana plants produced severe developmental abnormalities, which resembled those produced by mutations in the key genes of the gene silencing pathway. Analysis of transgenic plants expressing CLCuMuB βC1 using real-time PCR showed that the expression levels of both AGO1 and DCL1 genes were significantly increased. In contrast, the expression of HEN1 gene in the βC1-expressing leaf tissues was similar to that of wild-type plants. The CLCuMuB βC1 protein was found to physically interact with the AGO1 protein in a yeast two-hybrid system. It is possible that specific targeting of the gene silencing key components by the CLCuMuB βC1 inhibits the RNA silencing-based host defence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7868/S002689841703003X | DOI Listing |
World J Gastrointest Surg
January 2025
Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, Zhejiang Province, China.
Background: Unraveling the pathogenesis of colorectal cancer (CRC) can aid in developing prevention and treatment strategies. Aurora kinase A (AURKA) is a key participant in mitotic control and interacts with its co-activator, the targeting protein for Xklp2 (TPX2) microtubule nucleation factor. AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Kapadi, Inc., Raleigh, NC, United States.
Gene therapy has long been a cornerstone in the treatment of rare diseases and genetic disorders, offering targeted solutions to conditions once considered untreatable. As the field advances, its transformative potential is now expanding into oncology, where personalized therapies address the genetic and immune-related complexities of cancer. This review highlights innovative therapeutic strategies, including gene replacement, gene silencing, oncolytic virotherapy, CAR-T cell therapy, and CRISPR-Cas9 gene editing, with a focus on their application in both hematologic malignancies and solid tumors.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Human L35a ribosomal protein (RPL35A) has been reported to confer higher drug resistance and viability to triple-negative breast cancer (TNBC) cells, but the mechanism related to its promotion of TNBC malignant progression is still unclear. Here, we found that silencing of RPL35A could inhibit the proliferation of TNBC cells by suppressing the G1/S phase transition. Furthermore, SMAD-specific E3 ubiquitin protein ligase 2 (Smurf2) was found to be a potential upstream ubiquitin ligase of RPL35A.
View Article and Find Full Text PDFHereditas
January 2025
Department of Breast Disease, GaoZhou People'Hospital, Guangdong Province, 89 Xiguan Road, Maoming City, Gaozhou City, 525200, China.
Background: Ferroptosis has emerged as a promising therapeutic target in cancer treatment. CEP55, a key regulator of cell mitosis, plays a significant role in the tumorigenesis of many malignancies. In this study, we elucidated the function of CEP55 in the ferroptosis of breast cancer (BC).
View Article and Find Full Text PDFMol Cancer
January 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome/The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
The high mortality rate from hepatocellular carcinoma (HCC) is due primarily to challenges in early diagnosis and the development of drug resistance in advanced stages. Many first-line chemotherapeutic drugs induce ferroptosis, a form of programmed cell death dependent on ferrous iron-mediated oxidative stress, suggesting that drug resistance and ensuing tumor progression may in part stem from reduced ferroptosis. Since circular RNAs (circRNAs) have been shown to influence tumor development, we examined whether specific circRNAs may regulate drug-induced ferroptosis in HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!