Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis () vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO were highly affected in plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664473PMC
http://dx.doi.org/10.1104/pp.17.00971DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolism
12
photosynthetic capacity
12
malate fumarate
8
tonoplast dicarboxylate
8
dicarboxylate transporter
8
stomatal behavior
8
stomatal
6
impaired malate
4
fumarate accumulation
4
accumulation mutation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!