A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of aging and resistance training in rat tendon remodeling. | LitMetric

In elderly persons, weak tendons contribute to functional limitations, injuries, and disability, but resistance training can attenuate this age-related decline. We evaluated the effects of resistance training on the extracellular matrix (ECM) of the calcaneal tendon (CT) in young and old rats and its effect on tendon remodeling. Wistar rats aged 3 mo (young, = 30) and 20 mo (old, = 30) were divided into 4 groups: young sedentary, young trained, old sedentary (OS), and old trained (OT). The training sessions were conducted over a 12-wk period. Aging in sedentary rats showed down-regulation in key genes that regulated ECM remodeling. Moreover, the OS group showed a calcification focus in the distal region of the CT, with reduced blood vessel volume density. In contrast, resistance training was effective in up-regulating connective tissue growth factor, VEGF, and decorin gene expression in old rats. Resistance training also increased proteoglycan content in young and old rats in special small leucine-rich proteoglycans and blood vessels and prevented calcification in OT rats. These findings confirm that resistance training is a potential mechanism in the prevention of aging-related loss in ECM and that it attenuates the detrimental effects of aging in tendons, such as ruptures and tendinopathies.-Marqueti, R. C., Durigan, J. L. Q., Oliveira, A. J. S., Mekaro, M. S., Guzzoni, V., Aro, A. A., Pimentel, E. R., Selistre-de-Araujo, H. S. Effects of aging and resistance training in rat tendon remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201700543RDOI Listing

Publication Analysis

Top Keywords

resistance training
28
effects aging
12
tendon remodeling
12
aging resistance
8
training
8
training rat
8
rat tendon
8
young rats
8
resistance
7
rats
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!