From birth to death: A role for reactive oxygen species in neuronal development.

Semin Cell Dev Biol

Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA 9494, United States. Electronic address:

Published: August 2018

Historically, ROS have been considered toxic molecules, especially when their intracellular concentration reaches high values. However, physiological levels of ROS support crucial cellular processes, acting as second messengers able to regulate intrinsic signaling pathways. Specifically, both the central and peripheral nervous systems are especially susceptible to changes in the redox state, developing either a defense or adaptive response depending on the concentration, source and duration of the pro-oxidative stimuli. In this review, we summarize classical and modern concepts regarding ROS physiology, with an emphasis on the role of the NADPH oxidase (NOX) complex, the main enzymatic and regulated source of ROS in the nervous system. We discuss how ROS and redox state contribute to neurogenesis, polarization and maturation of neurons, providing a context for the spatio-temporal conditions in which ROS modulate neural fate, discriminating between "oxidative distress", and "oxidative eustress". Finally, we present a brief discussion about the "physiological range of ROS concentration", and suggest that these values depend on several parameters, including cell type, developmental stage, and the source and type of pro-oxidative molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2017.09.012DOI Listing

Publication Analysis

Top Keywords

redox state
8
ros
7
birth death
4
death role
4
role reactive
4
reactive oxygen
4
oxygen species
4
species neuronal
4
neuronal development
4
development historically
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

Melatonin protects aged oocytes from depalmitoylation-mediated quality reduction by promoting PPT1 degradation and antioxidation.

Redox Biol

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:

Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!