Protective effects of Paeoniflorin against AOPP-induced oxidative injury in HUVECs by blocking the ROS-HIF-1α/VEGF pathway.

Phytomedicine

Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangzhou 510515, China; Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China. Electronic address:

Published: October 2017

Background: Paeoniflorin, a monoterpene glycoside, exerts protective vascular effects, showing good antioxidant properties. However, whether Paeoniflorin has protective effect against the oxidative damage induced by advanced oxidation protein products (AOPPs) in Human umbilical vein endothelial cells (HUVECs) is unknown, as is the underlying mechanism.

Purpose: The present study was designed to investigate the effect of Paeoniflorin on oxidative damage of HUVECs and elucidate its underlying molecular mechanisms.

Methods: The fluorescence intensity of 2', 7'-dichlorofluorescein-diacetate (DCFH-DA) staining was detected for intracellular reactive oxygen species (ROS) production. The increases mitochondrial membrane potential (MMP) was measured via flow cytometry and confocal microscopy using MitoTracker® Deep Red/ MitoTracker® Green staining. The intracellular adenosine triphosphate (ATP) was measured by ATP Determination Kit according to the manufacturer's protocol. Nox2, Nox4, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and nuclear factor-κB (NF-κB) p65 expressions were detected by western blot.

Results: Our results showed that Paeoniflorin increases MMP and ATP levels of HUVECs induced by AOPPs, and attenuates NF-κB p65 expression on HUVECs might mainly result from its antioxidant capability by suppressing ROS production. Moreover, we also found that Paeoniflorin can suppress HIF-1α and VEGF protein expression through a decrease of ROS production via down-regulation of Nox2/Nox4 expression in HUVECs. AOPP-induced RAGE mRNA up-regulation was blocked by Paeoniflorin treatment in HUVECs.

Conclusion: Our results provided the first experimental that Paeoniflorin protects against AOPP-induced oxidative damage in HUVECs, mainly through a mechanism involving a decrease in ROS production by the inhibition of Nox2/Nox4 and RAGE expression; restored ATP depletion and mitochondria dysfunction via ROS suppression; and down-regulated HIF-1α/VEGF, possibly via the ROS-NF-κB axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2017.08.010DOI Listing

Publication Analysis

Top Keywords

ros production
16
oxidative damage
12
paeoniflorin
8
aopp-induced oxidative
8
damage huvecs
8
nf-κb p65
8
expression huvecs
8
decrease ros
8
huvecs
7
ros
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!