As the noncatalytic subunit of mammalian DNA polymerase, mitotic arrest-deficient protein 2B (MAD2B) has been reported to play a role in cell cycle regulation, DNA damage tolerance, gene expression, and carcinogenesis. Although its expression is known to be associated with poor prognosis in several types of human cancers, the significance of MAD2B expression in lung malignancies is still unclear. Our study showed that MAD2B expression significantly increased in lung cancer, especially in the metastatic tissues. We also found that knockdown of MAD2B inhibited the migration, invasion, and epithelial-mesenchymal transition of lung cancer cells in vitro and the metastasis in vivo, while overexpression of MAD2B had the opposite effect. Microarray and Western blotting data indicated that slug might be its downstream target since knockdown of MAD2B inhibited, while overexpression increased, the expression of slug. Moreover, the expression of MAD2B was found to be positively correlated with slug in lung cancer tissues as well. Collectively, these findings indicate an oncogenic role of MAD2B in lung cancer, and slug might be involved in the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848425 | PMC |
http://dx.doi.org/10.3727/096504017X15049209129277 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!