Background: Strain analysis is feasible using three-dimensional (3D) echocardiography. This approach provides various parameters based on speckle tracking analysis from one full-volume image of the left ventricle; however, evidence for its volume independence is still lacking.
Methods: Fifty-eight subjects who were examined by transthoracic echocardiography immediately before and after hemodialysis (HD) were enrolled. Real-time full-volume 3D echocardiographic images were acquired and analyzed using dedicated software. Two-dimensional (2D) longitudinal strain (LS) was also measured for comparison with 3D strain values.
Results: Longitudinal (pre-HD: -24.57 ± 2.51, post-HD: -21.42 ± 2.15, P < 0.001); circumferential (pre-HD: -33.35 ± 3.50, post-HD: -30.90 ± 3.22, P < 0.001); and radial strain (pre-HD: 46.47 ± 4.27, post-HD: 42.90 ± 3.61, P < 0.001) values were significantly decreased after HD. The values of 3D principal strain (PS), a unique parameter of 3D images, were affected by acute preload changes (pre-HD: -38.10 ± 3.71, post-HD: -35.33 ± 3.22, P < 0.001). Twist and torsion values were decreased after HD (pre-HD: 17.69 ± 7.80, post-HD: 13.34 ± 6.92, P < 0.001; and pre-HD: 2.04 ± 0.86, post-HD:1.59 ± 0.80, respectively, P < 0.001). The 2D LS values correlated with the 3D LS and PS values.
Conclusion: Various parameters representing left ventricular mechanics were easily acquired from 3D echocardiographic images; however, like conventional parameters, they were affected by acute preload changes. Therefore, strain values from 3D echocardiography should be interpreted with caution while considering the preload conditions of the patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596939 | PMC |
http://dx.doi.org/10.1186/s12947-017-0111-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!