The mixed benefit of low lipoprotein(a) in type 2 diabetes.

Lipids Health Dis

Division of Cardiology, Cliniques universitaires St-Luc and Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.

Published: September 2017

Background: Lipoprotein(a) (Lp(a)), a variant low-density lipoprotein (LDL), is a major genetic risk factor for cardiovascular disease. It is unknown whether an inverse relationship exists between Lp(a) and β-cell function (BCF), as for LDL-cholesterol (LDL-C) lowering by statins. We therefore assessedthe cardiometabolic phenotype of 340 men with type 2 diabetes mellitus (T2DM) in relation to Lp(a), focusing on BCF and hyperbolic product [BxS], which adjusts BCF to insulin sensitivity and secretion.

Methods: Two groups were analyzed according to Lp(a) quartiles (Q): a (very-)low Lp(a) (Q1;n = 85) vs a normal-to-high Lp(a) group (Q2-Q4;n = 255).

Results: In the overall cohort, mean Lp(a) was 52 nmol.L. Median Lp(a) was 6 nmol.L (Q1) vs 38 nmol.L (Q2-Q4). There were no differences between groups regarding age; education; diabetes duration; body mass index; body composition and smoking. Q1 had significantly worse glycemic control, higher systolic blood pressure, more severe metabolic syndrome, and more frequent hepatic steatosis. Insulin sensitivity was significantly lower (- 37%) in Q1, who also had lesser hyperbolic product (- 27%), and higher [BxS] loss rate (+ 15%). Q1 also had higher frequency (+31%) and severity (+20%) of atherogenic dyslipidemia. Microangiopathy and neuropathy were higher in Q1 (+ 34% and + 48%, respectively), whereas Q2-Q4 patients had increased macroangiopathy (+ 51%) and coronary artery disease (CAD; + 94%).

Conclusions: Low Lp(a) appears both beneficial and unhealthy in T2DM. It is associated with unfavourable cardiometabolic phenotype, lesser BCF, poorer glycemic control, and increased microvascular damage despite being linked to markedly reduced CAD, suggesting that Lp(a)-related vascular risk) follows a J-shaped curve.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596924PMC
http://dx.doi.org/10.1186/s12944-017-0564-9DOI Listing

Publication Analysis

Top Keywords

lpa
9
type diabetes
8
cardiometabolic phenotype
8
hyperbolic product
8
insulin sensitivity
8
glycemic control
8
mixed benefit
4
benefit low
4
low lipoproteina
4
lipoproteina type
4

Similar Publications

Background: Lipoprotein(a) [Lp(a)] is associated with increased cardiovascular risk, but its influence on plaque characteristics at optical coherence tomography (OCT) evaluation is not fully understood.

Aims: This study seeks to explore the impact of Lp(a) levels on plaque morphology as assessed by OCT in a very high-risk subset of patients.

Methods: Consecutive patients admitted for acute coronary syndrome (ACS) and undergoing OCT-guided percutaneous coronary intervention (PCI) at a large tertiary care center between 2019 and 2022 were deemed eligible for the current analysis.

View Article and Find Full Text PDF

CRISPR-Cas12a-based detection and differentiation of Mycobacterium spp.

Clin Chim Acta

December 2024

Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama IV, Bangkok 10330, Thailand. Electronic address:

Mycobacterium species cause several vital human diseases, including tuberculosis and non-tuberculous mycobacterial infections which are treated with different drug regimens Therefore, accurate and rapid diagnosis is essential for effective treatment and controlling the spread of these pathogens. This study aims to develop the isothermal method combining RPA and CRISPR-Cas12a techniques, named as MyTRACK, to detect and differentiate major clinical mycobacteria at the species level. The assay has no cross-reactivity with limit of detection of 1 to 100 copies/reaction for various targeted mycobacteria.

View Article and Find Full Text PDF

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Institute, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

Background: Lipoprotein(a) [Lp(a)] is a low-density lipoprotein variant with atherogenic, thrombogenic, and pro-inflammatory properties that may have numerous pathologic effects, including dyslipidemia. Screening for Lp(a) is clinically significant, due to its causal role in atherosclerotic cardiovascular disease (ASCVD). Among clinicians, however, there remains a general lack of both clinical awareness of Lp(a) and adequate tools to track Lp(a) testing in patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!