Early laryngeal, especially glottic, cancer is a good candidate for radiotherapy because obvious early symptoms (e.g. hoarseness) make earlier treatment possible and with highly successful localized control. This type of cancer is also a good model for exploring the basic principles of radiation oncology and several key findings (e.g. dose, fractionation, field size, patient fixation, and overall treatment time) have been noted. For example, unintended poor outcomes have been reported during transition from 60Cobalt to linear accelerator installation in the 1960s, with usage of higher energy photons causing poor dose distribution. In addition, shell fixation made precise dose delivery possible, but simultaneously elevated toxicity if a larger treatment field was necessary. Of particular interest to the radiation therapy community was altered fractionation gain as a way to improve local tumor control and survival rate. Unfortunately, this interest ceased with advancements in chemotherapeutic agents because alternate fractionation could not improve outcomes in chemoradiotherapy settings. At present, no form of acceleration can potentially compensate fully for the lack of concurrent chemotherapy. In addition, the substantial workload associated with this technique made it difficult to add extra fractionation routinely in busy clinical hospitals. Hypofractionation, on the other hand, uses a larger single fractionation dose (2-3 Gy), making it a reasonable and attractive option for T1-T2 early glottic cancer because it can improve local control without the additional workload. Recently, Japan Clinical Oncology Group study 0701 reprised its role in early T1-T2 glottic cancer research, demonstrating that this strategy could be an optional standard therapy. Herein, we review radiotherapy history from 60Cobalt to modern linear accelerator, with special focus on the role of alternate fractionation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569999 | PMC |
http://dx.doi.org/10.1093/jrr/rrx023 | DOI Listing |
J Nucl Med
January 2025
Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and.
The treatment regimen for [Lu]Lu-prostate-specific membrane antigen (PSMA) 617 therapy follows that of chemotherapy: 6 administrations of a fixed activity, each separated by 6 wk. Mathematic modeling can be used to test the hypothesis that the current treatment regimen for a radiopharmaceutical modality is suboptimal. A mathematic model was developed to describe tumor growth during [Lu]Lu-PSMA therapy.
View Article and Find Full Text PDFPLoS One
January 2025
LIB, Université de Bourgogne, Franche-Comté, Dijon, France.
The backbone extraction process is pivotal in expediting analysis and enhancing visualization in network applications. This study systematically compares seven influential statistical hypothesis-testing backbone edge filtering methods (Disparity Filter (DF), Polya Urn Filter (PF), Marginal Likelihood Filter (MLF), Noise Corrected (NC), Enhanced Configuration Model Filter (ECM), Global Statistical Significance Filter (GloSS), and Locally Adaptive Network Sparsification Filter (LANS)) across diverse networks. A similarity analysis reveals that backbones extracted with the ECM and DF filters exhibit minimal overlap with backbones derived from their alternatives.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Tau is a neuronal microtubule associated protein whose interactions with microtubules are regulated by phosphorylation. Tau has numerous putative phosphorylation sites, but it is unclear which combinations of Tau phosphorylation co-occur in the normal state and precisely how they impact Tau function. Adding further complexity, there are six major Tau isoforms arising from alternative splicing.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: Neurofibrillary tangles (NFT), consisting of hyperphosphorylated tau aggregates, are one of the major pathological hallmarks of Alzheimer's disease (AD). The burden of NFTs correlates with cognitive decline, and in vivo detection of NFT may help predict the clinical progression of AD. Mass spectrometry-based proteomic analysis of brain regions affected by NFTs holds the potential to unveil the molecular mechanisms underlying tau pathogenesis and uncover novel diagnostic/prognostic biomarkers and therapeutic targets.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Homi Bhabha National Institute, Mumbai, Maharashtra, India.
Background: Receptor Tyrosine kinase-mediated signaling is indispensable for the cell's normal functioning, the perturbation of which leads to disease conditions. The altered expression and activity of several Receptor Tyrosine kinases (RTKs) are known to regulate the pathophysiology of Alzheimer's disease (AD). However, the mechanistic details remain illusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!