Integrating microbial fuel cell with constructed wetland (CW-MFC) is a novel way to harvest bioelectricity during wastewater treatment. In this study, the bioelectricity generation, containment removal and microbial community distribution in CW-MFC as affected by substrate material sizes and aquatic macrophyte were investigated. The planted CW-MFC with larger filler size showed a significant promotion of the relative abundance of electrochemically active bacteria (beta-Proteobacteria), which might result in the increase of bioelectricity generation in CW-MFC (8.91mWm). Additionally, a sharp decrease of voltage was observed in unplanted CW-MFC with smaller filler size in Cycle eight. However, the peak COD (86.7%) and NO-N (87.1%) removal efficiencies were observed in planted CW-MFC with smaller filler size, which was strongly related to the biodiversity of microorganisms. Generally, the acclimation of exoelectrogens as dominant microbes in the anode chamber of planted CW-MFC with larger filler size could promote the bioelectricity generation during wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.08.191 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Natural and Computational Sciences, Wolaita Soddo University, P. Box 138, Wolaita Soddo, Ethiopia.
A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.
View Article and Find Full Text PDFJ Bacteriol
December 2024
School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA.
Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.
View Article and Find Full Text PDFBioTech (Basel)
December 2024
Department of Environmental Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan.
Sorghum distillers grains (SDGs) produced from a sorghum liquor company were used for generating biohydrogen via dark fermentation at pH 4.5-6.5 and 55 °C with a batch test, and the biohydrogen electricity generation potential was evaluated.
View Article and Find Full Text PDFiScience
December 2024
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.
View Article and Find Full Text PDFEuropace
December 2024
Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
In 2024, we celebrate the 100th anniversary of Willem Einthoven receiving the Nobel Prize for his discovery of the mechanism of the electrocardiogram. Building on Einthoven's legacy, electrocardiography allows the monitoring of cardiac bioelectricity through solutions to the so-called forward and inverse problems. These solutions link local cardiac electrical signals with the morphology of the electrocardiogram, offering a reversible connection between the heart's electrical activity and its representation on the body surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!