Plant shoots typically grow against the gravity vector to access light, whereas roots grow downward into the soil to take up water and nutrients. These gravitropic responses can be altered by developmental and environmental cues. In this review, we discuss the molecular mechanisms that govern the gravitropism of angiosperm roots, where a physical separation between sites for gravity sensing and curvature response has facilitated discovery. Gravity sensing takes place in the columella cells of the root cap, where sedimentation of starch-filled plastids (amyloplasts) triggers a pathway that results in a relocalization to the lower side of the cell of PIN proteins, which facilitate efflux of the plant hormone auxin efflux. Consequently, auxin accumulates in the lower half of the root, triggering bending of the root tip at the elongation zone. We review our understanding of the molecular mechanisms that control this process in primary roots, and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture and soil exploration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2017.07.015 | DOI Listing |
J Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFMol Neurodegener
January 2025
The Picower Institute for Learning and Memory, Cambridge, MA, USA.
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy.
View Article and Find Full Text PDFBMC Gastroenterol
January 2025
Department of Biostatistics, Payame Noor University, Karaj, Iran.
Objective: Bacterial gastroenteritis is a significant public health concern, capable of causing severe infections. Among the various pathogens involved, those belonging to the Enterobacteriaceae family are the most frequently isolated and associated with gastrointestinal disorders. This study aimed to investigate the prevalence of common diarrheagenic Enterobacteriaceae in Iran over the past two decades, from 2000 to 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!