General approaches for controlled protein modification are increasingly sought-after in the arena of chemical biology. Here, using bioorthogonal reactions, we present combinatorial chemoenzymatic strategies to effectuate protein labeling. A total of three metal-free conjugations were simultaneously or sequentially incorporated in a one-pot format with microbial transglutaminase (MTG) to effectuate protein labeling. MTG offers the particularity of conjugating residues within a protein sequence rather than at its extremities, providing a route to labeling the native protein. The reactions are rapid and circumvent the incompatibility posed by metal catalysts. We identify the tetrazine ligation as most-reactive for this purpose, as demonstrated by the fluorescent labeling of two proteins. The Staudinger ligation and strain-promoted azide-alkyne cycloaddition are alternatives. Owing to the breadth of labels that MTG can use as a substrate, our results demonstrate the versatility of this system, with the researcher being able to combine specific protein substrates with a variety of labels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.7b00509 | DOI Listing |
Nat Commun
January 2025
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.
View Article and Find Full Text PDFMagn Reson Med
November 2024
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
Purpose: To observe the tumor responses during photodynamic therapy in a murine glioblastoma model using chemical exchange saturation transfer (CEST) MRI and to compare the treatment effectiveness between single photodynamic therapy (sPDT) and repeated PDT (rePDT).
Methods: After tumor cell implantation in NSG mouse brain (n = 27), mice were subjected to four PDT sessions (rePDT), sPDT after the administration of 5-aminolevulinic acid 6 h before each session, and a non-PDT session (control). A 630-nm LED light was used to effectuate PDT.
Heliyon
September 2024
Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions.
View Article and Find Full Text PDFBiomater Sci
September 2024
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
Understanding the interactions of nanoparticle carriers with innate immune cells is crucial for informing the design and efficacy of future nano-immunotherapies. An intriguing aspect of their interaction with the immune system has recently emerged, , their ability to activate the NLRP3 inflammasome, a key component of the innate immune response. While the effect of the surface properties of nanoparticles has been extensively investigated in the context of nanoparticle-immune cell interactions, the influence of core composition remains largely unexplored, particularly regarding its impact on inflammasome activation.
View Article and Find Full Text PDFPlant J
September 2024
Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada.
HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!