Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739002PMC
http://dx.doi.org/10.1038/ismej.2017.142DOI Listing

Publication Analysis

Top Keywords

coral reef
12
coral reefs
12
doc concentrations
12
virulence factors
8
algal cover
8
high doc
8
microbial populations
8
commensal pathogenic
8
contributing coral
8
reef degradation
8

Similar Publications

The number of high-quality genomes is rapidly increasing across taxa. However, it remains limited for coral reef fish of the Pomacentrid family, with most research focused on anemonefish. Here, we present the first assembly for a Pomacentrid of the genus .

View Article and Find Full Text PDF

Biofilm development as a factor driving the degradation of plasticised marine microplastics.

J Hazard Mater

December 2024

College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.

Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.

View Article and Find Full Text PDF

The Dynamics of Symbiodiniaceae and Photosynthetic Bacteria Under High-Temperature Conditions.

Microb Ecol

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions.

View Article and Find Full Text PDF

As marine heatwaves and mass coral bleaching events rise in frequency and severity, there is an increasing need for high-resolution satellite products that accurately predict reef thermal environments over large spatio-temporal scales. Deciding which global sea surface temperature (SST) dataset to use for research or management depends in part on the desired spatial resolution. Here, we evaluate two SST datasets - the lower-resolution CoralTemp v3.

View Article and Find Full Text PDF

Microplastics in the surface waters of the northern South China Sea: Interannual variation and potential ecological risks.

Mar Environ Res

January 2025

South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.

Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!