Global warming is bringing more frequent and severe heat waves, and the result will be serious for vulnerable populations such as construction workers. Excessive heat stress has profound effects on physiological responses, which cause occupational injuries, fatalities and low productivity. Construction workers are particularly affected by heat stress, because of the body heat production caused by physically demanding tasks, and hot and humid working conditions. Field studies were conducted between August and September 2016 at two construction training grounds in Hong Kong. Onsite wet-bulb globe temperature (WBGT), workers' heart rate (HR), and labor productivity were measured and monitored. Based on the 378 data sets of synchronized environmental, physiological, construction labor productivity (CLP), and personal variables, a CLP-heat stress model was established. It was found that WBGT, percentage of maximum HR, age, work duration, and alcohol drinking habits were determining factors for predicting the CLP (adjusted ² = 0.68, < 0.05). The model revealed that heat stress reduces CLP, with the percentage of direct work time decreasing by 0.33% when the WBGT increased by 1 °C. The findings in this study extend the existing practice notes by providing scientific data that may be of benefit to the industry in producing solid guidelines for working in hot weather.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615592 | PMC |
http://dx.doi.org/10.3390/ijerph14091055 | DOI Listing |
Int J Biol Sci
January 2025
Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.
Heat acclimation (HA) is an evolutionarily conserved trait that enhances tolerance to novel stressors by inducing heat shock proteins (HSPs). However, the molecular mechanisms underlying this phenomenon remain elusive. In this study, we established a HA mouse model through intermittent heat stimulation.
View Article and Find Full Text PDFCureus
December 2024
Department of Community Medicine, College of Medicine, Gulf Medical University, Ajman, ARE.
Objectives: The purpose of this research was to assess the impact of exposure to heat on the physical, social, and mental health domains of adults residing in the United Arab Emirates (UAE), where the region faces great increases in temperature due to climate change. Previous research has focused mainly on physical health outcomes; this research addressed the expansive impacts of mental and social health, which remain understudied in the region.
Methods: A cross-sectional study surveyed 397 adults in the UAE using a structured questionnaire.
Int J Med Sci
January 2025
Department of Rheumatism and Immunology, Tianjin First Central hospital, Tianjin, China.
Autoimmune inner ear disease (AIED) is a rare condition characterized by immune-mediated damage to the inner ear, leading to progressive sensorineural hearing loss (SNHL) and vestibular symptoms such as vertigo and tinnitus. This study investigates the pathogenesis and therapeutic strategies for AIED through the analysis of three cases with different underlying autoimmune disorders: rheumatoid arthritis, relapsing polychondritis, and IgG4-related disease. The etiology of AIED involves complex immunopathological mechanisms, including molecular mimicry and the "bystander effect," with specific autoantibodies, such as those against heat shock protein 70 (HSP70), playing a potential role in cochlear damage.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Humboldt-Universitat zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, GERMANY.
Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92% conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!