Charge transport by inverse micelles in non-polar media.

J Phys Condens Matter

Electronics and Information Systems Department and Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, 9052 Zwijnaarde, Belgium.

Published: November 2017

Charged inverse micelles play an important role in the electrical charging and the electrodynamics of nonpolar colloidal dispersions relevant for applications such as electronic ink displays and liquid toner printing. This review examines the properties and the behavior of charged inverse micelles in microscale devices in the absence of colloidal particles. It is discussed how charge in nonpolar liquids is stabilized in inverse micelles and how conductivity depends on the inverse micelle size, water content and ionic impurities. Frequently used nonpolar surfactant systems are investigated with emphasis on aerosol-OT (AOT) and poly-isobutylene succinimide (PIBS) in dodecane. Charge generation in the bulk by disproportionation is studied from measurements of conductivity as a function of surfactant concentration and from generation currents in quasi steady-state. When a potential difference is applied, the steady-state situation can show electric field screening or complete charge separation. Different regimes of charge transport are identified when a voltage step is applied. It is shown how the transient and steady-state currents depend on the rate of bulk generation, on insulating layers and on the sticking or non-sticking behavior of charged inverse micelles at interfaces. For the cases of AOT and PIBS in dodecane, the magnitude of the generation rate and the type of interaction at the interface are very different.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aa8bf6DOI Listing

Publication Analysis

Top Keywords

inverse micelles
20
charged inverse
12
charge transport
8
behavior charged
8
pibs dodecane
8
inverse
6
charge
5
micelles
5
transport inverse
4
micelles non-polar
4

Similar Publications

Where do the pyrene molecules reside within the surface active ionic liquid micelles in presence of sodium alginate?

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Presidency University, Kolkata 700073, India. Electronic address:

Pyrene fluorescence in aqueous solutions of two surface active ionic liquids, namely, 1-decyl-3-methylimidazolium chloride, and 1-hexadecyl-3-methylimidazolium chloride was investigated in presence of a biopolymer sodium alginate. The principal objective of this study was to explore the influence of the length of the hydrocarbon tails of these surface active ionic liquids on the possible location of the probe (pyrene) molecules in presence of the additive. While an abrupt decrease in the values of the ratio of the intensity of the first vibronic band to that of the third band of pyrene emission spectrum with concentration was observed for 1-hexadecyl-3-methylimidazolium chloride in presence of sodium alginate like the polymer-free case reported earlier, there was a peculiar reversal for 1-decyl-3-methylimidazolium chloride + sodium alginate.

View Article and Find Full Text PDF

Objective: The aim of this work was to investigate the solubility and co-solubilization of fragrance raw materials (FRMs) in sodium dodecyl sulfate (SDS) and polysorbate 20 (P20) surfactant micellar systems, which can advance our knowledge of multi-solute micellar solubilization and fragrance olfactory performance from product matrices containing the surfactants.

Methods: The transfer of individual FRMs and binary FRM mixtures into micellar phases was quantified by UV-VIS differential spectroscopy and evaluated in terms of the standard Gibbs free energy change and micelle-water partition coefficient. Co-solubilization effects were further evaluated by the deviation ratio.

View Article and Find Full Text PDF

Here, we present a modular synthesis as well as physicochemical and biological evaluation of a new series of amphiphilic dendrons carrying triphenylphosphonium groups at their periphery. Within the series, the size and mutual balance of lipophilic and hydrophilic domains are systematically varied, changing the dendron shape from cylindrical to conical. In physiological solution, the dendrons exhibit very low critical micelle concentrations (2.

View Article and Find Full Text PDF

Selective oxidation of styrene over transition metal-doped mesoporous silica catalyst.

J Colloid Interface Sci

February 2025

Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269, USA; Institute of Materials Science, University of Connecticut, 25 Kings Hill Road, Storrs, CT 06269, USA. Electronic address:

An inverse-micelle sol-gel method was used to prepare Ti and Fe-doped mesoporous silica catalysts, and they were utilized for selective oxidation of styrene to benzaldehyde. The amorphous peak of silica was confirmed by XRD and there were no peaks related to Ti or Fe oxides. Results indicate that the metals were homogeneously distributed in the silica matrix, leading to higher surface area and pore volume.

View Article and Find Full Text PDF

Liposomal drug delivery is a promising approach for delivering therapeutics effectively. While most liposomes are designed to be nanometer-sized for efficient cellular uptake, micron-sized liposomes are gaining interest due to their larger drug-loading capacity. When combined with macroscale structures, such as implants and hydrogels, they offer prolonged therapeutic delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!