Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chiral azobenzenes can be used as photoswitchable dopants to control supramolecular helices in liquid crystals. However, the lack of thermal stability of the cis-isomer precludes envisioning the generation of long-lived supramolecular helices with light. Here, this study demonstrates thermally stable and axially chiral azobenzene switches that can be used as chiral dopants to create supramolecular helices from (achiral) nematic liquid crystals. Their trans-to-cis photoisomerization leads to a variation of helical twisting power that reaches up to 60%, and the helical superstructure that is engineered with light displays a relaxation time that reaches tens of hours. These results demonstrate that combining ortho-fluorination with axial chirality in molecular photoswitches constitutes an efficient strategy to promote long-lived helical states. Further, this approach shows potential to design supramolecular machines that are controlled by light entirely.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201700387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!