Introduction: The tuberous roots of Stephania kwangsiensis, which contain bioactive alkaloids, are used as a traditional Chinese medicine. Overexploitation of the roots has made the plant increasingly rare, and the abundant leaves of the same plant may offer a potential alternative. However, there is insufficient phytochemical information for a comparison of alkaloid compositions in the two parts.
Objective: To characterise and compare the alkaloids in the leaves and roots of S. kwangsiensis.
Methods: The alkaloids in S. kwangsiensis were characterised using high pressure liquid chromatography coupled with positive electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (HPLC-(+)ESI-QTOF-MS/MS). The alkaloid compositions in the leaves and roots were compared by visual inspection combined with principal component analysis (PCA) of the HPLC-MS data.
Results: Seventy-five alkaloids comprising aporphine-, proaporphine-, protoberberine-, benzylisoquinoline-, bisbenzylisoquinoline- and morphine-type alkaloids were identified or tentatively identified in the roots and leaves of S. kwangsiensis. Sixty-three of these alkaloids have not been previously reported in this species, and three have not been previously reported in the literature. The roots and leaves had similarities in alkaloid composition but differences in the peak intensities of most alkaloids. The PCA revealed that the samples were clustered into two distinct groups, which corresponded to leaves and roots.
Conclusion: This study further clarified the chemical constituents in the roots of S. kwangsiensis, and revealed that diverse alkaloids were also present in the leaves. The comparative chemical profiling of the two parts provides useful information on their potential medicinal use. Copyright © 2017 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pca.2718 | DOI Listing |
J Org Chem
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China.
Alstoschoquinolines A-D (-) representing three unprecedented scaffolds were isolated from the leaves of through direct separation by LC/MS detection. and consisted of a 5/6/5-coupled quinoline architecture containing six consecutive chiral carbons, while and possessed a bridged ring featuring 6/6/6/6 and 6/6/8/6 skeletons, respectively. They might be derived from the corynantheine-type indole alkaloid via sequential oxidation and rearrangement.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China; Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People's Republic of China. Electronic address:
Pyrrole alkaloids are a class of natural products with intriguing structures and promising biological actives. Within the Sauropus plants, these alkaloids are mainly present in Sauropus spatulifolius. An investigation of the leaves of S.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFMolecules
December 2024
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Life Sciences, Chongqing University, Chongqing 401331, China.
Late blight, caused by , is a devastating disease of potato. Our previous work illustrated that scopolamine, the main bioactive substance of extract, exerts direct inhibitory effects on , but it is unclear whether scopolamine and extract can boost resistance to late blight in potato. In this study, .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!