Although mortality from prostate cancer has declined over the past 20 years as a result of early detection and treatment, the 5-year survival rate for men with prostate cancer who develop metastatic disease is only 29%. Current treatment options for metastatic castration-recurrent prostate cancer (mCRPC) are associated with toxicity and a limited durable response; therefore, additional lines of efficacious and minimally toxic therapy are needed. Olaparib, a poly(adenosine 5'-diphosphate) ribose polymerase (PARP) inhibitor, received a U.S. Food and Drug Administration breakthrough therapy designation in January 2016 for the treatment of patients with BRCA1/2 or ATM gene-mutated mCRPC based on results of a compelling phase II trial of olaparib in patients with advanced castration-resistant prostate cancer (TOPARP-A). This study found that men with mCRPC and genetic mutations in DNA damage repair genes had an overall response rate of nearly 90% with olaparib treatment. In this review, we describe current therapies for mCRPC, the rationale for anti-PARP therapies, the pharmacology of olaparib for prostate cancer, clinical trials of olaparib for mCRPC, our clinical experience with olaparib for prostate cancer at a comprehensive cancer center, and future directions of olaparib for the treatment of mCRPC. Olaparib may constitute a promising treatment to prolong survival in patients with mCRPC, with an acceptable adverse effect profile. As the role of PARP inhibition in prostate cancer and other malignancies becomes further elucidated, olaparib may be shown to be beneficial for other patient populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/phar.2027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!