Pericytes are defined by their anatomical location encircling blood vessels' walls with their long projections. The exact embryonic sources of cerebral pericytes remain poorly understood, especially because of their recently revealed diversity. Yamamoto et al. (Sci Rep 7(1):3855, 2017) using state-of-the-art techniques, including several transgenic mice models, reveal that a subpopulation of brain pericytes are derived from phagocytic macrophages during vascular development. This work highlights a new possible ancestor of brain pericytes. The emerging knowledge from this research may provide new approaches for the treatment of several neurodevelopmental disorders in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180321PMC
http://dx.doi.org/10.1007/s10571-017-0549-2DOI Listing

Publication Analysis

Top Keywords

brain pericytes
12
pericytes
5
macrophages generate
4
generate pericytes
4
pericytes developing
4
developing brain
4
pericytes defined
4
defined anatomical
4
anatomical location
4
location encircling
4

Similar Publications

Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.

View Article and Find Full Text PDF

The persistence or emergence of long-term symptoms following resolution of primary SARS-CoV-2 infection is referred to as long COVID or post-acute sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Among these, the central nervous system (CNS) is significantly impacted, leading to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral neuropathy (neuro-PASC).

View Article and Find Full Text PDF

Neurovascular unit impairment in iron deficiency anemia.

Neuroscience

December 2024

Departamento de Neurobiología y Neuropatología, IIBCE, MEC, Montevideo, Uruguay. Electronic address:

Iron is one of the crucial elements for CNS development and function and its deficiency (ID) is the most common worldwide nutrient deficit in the world. Iron deficiency anemia (IDA) in pregnant women and infants is a worldwide health problem due to its high prevalence and its irreversible long-lasting effects on brain development. Even with iron supplementation, IDA during pregnancy and/or breastfeeding can result in irreversible cognitive, motor, and behavioral impairments.

View Article and Find Full Text PDF

Amyloid beta Aβ activates Piezo1 channels in brain capillary endothelial cells.

Biophys J

December 2024

Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, 05405, USA. Electronic address:

Amyloid-beta (Aβ) peptide accumulation on blood vessels in the brain is a hallmark of neurodegeneration. While Aβ peptides constrict cerebral arteries and arterioles, their impact on capillaries is less understood. Aβ was recently shown to constrict brain capillaries through pericyte contraction, but whether-and if so how-Aβ affects endothelial cells (ECs) remains unknown.

View Article and Find Full Text PDF

Background: Chronic arterial hypertension restructures the vascular architecture of the brain, leading to a series of pathological responses that culminate in cerebral small-vessel disease. Pericytes respond dynamically to vascular challenges; however, how they manifest under the continuous strain of hypertension has not been elucidated.

Methods And Results: In this study, we characterized pericyte behavior alongside hypertensive states in the spontaneously hypertensive stroke-prone rat model, focusing on their phenotypic and metabolic transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!