Homogeneous reactions in general are relatively easy to study with respect to heterogeneous systems since all catalytic sites are uniform and can be addressed simultaneously. The latter feature is fully out of the window in an electrochemical context, where only the few catalytic species that are sufficiently close to the electrode undergo redox reactions. Especially in the water oxidation reaction where harsh reaction conditions are employed, a clear picture of what is the active species, what products are formed, how one can steer this, and how it all depends on the exact reaction conditions is important to be able to fully unravel the key reaction paths. The combination of electrochemical experiments with on-line detection of the catalytic species and reaction products is a powerful approach to successfully address these questions. Recently, a significant progress has been made in on-line studies on molecular water oxidation catalysts during electrochemical experiments. These are reviewed here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc04944g | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.
View Article and Find Full Text PDFLangmuir
January 2025
Federal University of Itajubá, Itajubá-MG 37500-903, Brazil.
CuO/CeO and CuO/CeO-LaO catalysts, synthesized with varying CeO and LaO molar ratios (1:1, 1:2, and 2:1), were prepared via the hydrothermal method and tested in the water-gas shift reaction (150-350 °C). LaO addition altered structural properties, reducing surface area and copper dispersion. XANES and in situ XRD confirmed metallic Cu species during reduction and reaction.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Natural Products and Heterocyclic Synthesis, Department of Organic Chemistry, Faculty of Sciences, The University of Yaoundé 1, Yaoundé, Cameroon.
From the leaves of , fourteen compounds were isolated and identified: D-mannitol (), a mixture of β-sitosterol () and stigmasterol (), α-amyrin (), betulin (), lupeol (), lupenone (), betulinic acid (), taraxerol (), 3β-(E)-coumaroyltaraxerol (), 3β-(Z)-coumaroyltaraxerol (), ursolic acid (), stigmasterol 3-O-β-D-glucoside (), and β-sitosterol 3-O-β-D-glucoside (). These compounds were analysed through NMR spectroscopy (both 1D and 2D) and by comparing them to previously published data. Compounds , , , and - have been identified from this species for the first time.
View Article and Find Full Text PDFAnal Chem
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Boriranes, highly strained three-membered cyclic organoboron heterocycles, have emerged as potential synthons for the synthesis of many organoboron species. However, the synthesis of boriranes with tricoordinate, sp-hybridised boron and tetracoordinate, sp-hybridised carbon atoms is very challenging owing to their high Lewis acidity. Herein we describe the isolation of base-free triaminoboriranes from the room-temperature reaction of diaminoalkynes with an aminodistannylborane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!