A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio)colloids to obtain viscoelastic bond properties is still a subject of debate. Here, we analyze the QCM-D output to analyze the bond between two hydrophilic streptococcal strains 91 nm long and without fibrillar surface appendages and micron-sized hydrophobic polystyrene particles on QCM-D crystal surfaces with different hydrophobicities, using the Kelvin-Voigt model and the Maxwell model. A Poisson distribution was implemented in order to determine the possible virtues of including polydispersity when fitting model parameters to the data. The quality of the fits did not indicate whether the Kelvin-Voigt or the Maxwell model is preferable and only polydispersity in spring-constants improved the fit for polystyrene particles. The Kelvin-Voigt and Maxwell models both yielded higher spring-constants for the bald streptococcus than for the fibrillated one. In both models, the drag coefficients increased for the bald streptococcus with the ratio of electron-donating over electron-accepting parameters of the crystal surface, while for the fibrillated strain the drag coefficient was similar on all crystal surfaces. Combined with the propensity of fibrillated streptococci to bind to the sensor crystal as a coupled-resonator above the crystal surface, this suggests that the drag experienced by resonator-coupled, hydrophilic particles is more influenced by the viscosity of the bulk water than by interfacial water adjacent to the crystal surface. Hydrophilic particles that lack a surface tether are mass-coupled just above the crystal surface and accordingly probe the drag due to the thin layer of interfacial water that is differently structured on hydrophobic and hydrophilic surfaces. Hydrophobic particles without a surface tether are also mass-coupled, but their drag coefficient decreases when the ratio of electron-donating over electron-accepting parameters increases, suggesting that hydrophobic particles experience less drag due to the structured water adjacent to the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp04676f | DOI Listing |
R Soc Open Sci
January 2025
WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
Chronic myeloid leukaemia (CML) is primarily treated using imatinib mesylate, a tyrosine kinase inhibitor (TKI) targeting the BCR::ABL1 oncoprotein. However, the development of drug resistance and adverse side effects necessitate the exploration of alternative therapeutic agents. This study presents the synthesis and characterization of a novel imatinib analogue, 3-chloro--(2-methyl-5-((4-(pyridin-2-yl)pyrimidin-2-yl)amino)phenyl)benzamide (PAPP1).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.
Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.
Nat Commun
January 2025
Department of Physics, University of Michigan, Ann Arbor, MI, USA.
Excitons, bound electron-hole pairs, influence the optical properties in strongly interacting solid-state systems and are typically most stable and pronounced in monolayer materials. Bulk systems with large exciton binding energies, on the other hand, are rare and the mechanisms driving their stability are still relatively unexplored. Here, we report an exceptionally large exciton binding energy in single crystals of the bulk van der Waals antiferromagnet CrSBr.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1; Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8S 4K1. Electronic address:
Type VI secretion systems (T6SS) are dynamic protein nanomachines found in Gram-negative bacteria that deliver toxic effector proteins into target cells in a contact-dependent manner. Prior to secretion, many T6SS effector proteins require chaperones and/or accessory proteins for proper loading onto the structural components of the T6SS apparatus. However, despite their established importance, the precise molecular function of several T6SS accessory protein families remains unclear.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!