Objective: The purpose of this study was to compare two short-tau inversion recovery (STIR) sequences, Cartesian and radial (BLADE) acquisitions, for breast magnetic resonance imaging (MRI) examinations.

Materials And Methods: Ninety-six women underwent 1.5 T breast MRI exam (48 Cartesian and 48 BLADE). Qualitative analysis including image artifacts, image quality, fat-suppression, chest-wall depiction, lesion detection, lymph node depiction and overall impression were evaluated by three blinded readers. Signal to noise ratios (SNRs) were calculated. Cronbach's alpha test was used to assess inter-observer agreement. Subanalyses of image quality, chest-wall depiction and overall impression in 15 patients with implants and image quality in 31 patients with clips were correlated using Pearson test. Wilcoxon rank sum test and -test were performed.

Results: Motion artifacts were present in 100% and in 0% of the Cartesian and the BLADE exams, respectively. Chemical-shift artifacts were present in 8% of the Cartesian exams. Flow artifacts were more frequent on BLADE. BLADE sequence was statistically superior to Cartesian for all qualitative features ( < 0.05) except for fat-suppression ( = 0.054). In the subanalysis, BLADE was superior for implants and clips ( < 0.05). SNR was statistically greater for BLADE (48.35 vs. 16.17). Cronbach ranged from 0.502 to 0.813.

Conclusion: BLADE appears to be superior to Cartesian acquisition of STIR imaging as measured by improved image quality, fewer artifacts, and improved chest wall and lymph node depiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586511PMC
http://dx.doi.org/10.1590/0100-3984.2015-0197DOI Listing

Publication Analysis

Top Keywords

image quality
16
cartesian radial
8
short-tau inversion
8
inversion recovery
8
recovery stir
8
stir sequences
8
breast mri
8
blade
8
cartesian blade
8
chest-wall depiction
8

Similar Publications

Are there atypical sites of IgG4 related disease in head and neck region? Personal experience and literature review.

Eur Arch Otorhinolaryngol

January 2025

Department of Otolaryngology and Head and Neck Surgery, IRCSS AOU San Martino, University of Genoa, Largo Rosanna Benzi 10, 16132, Genoa, Italy.

Purpose: Immunoglobulin G4-related disease (IgG4-RD) is a complex systemic fibroinflammatory condition with different clinical manifestations affecting multiple organ systems. Despite its rarity, the disease presents diagnostic and therapeutic challenges due to its mimicry of malignancies and other immune-mediated disorders. The 2019 American College of Rheumatology/European League Against Rheumatism Classification Criteria for IgG4-Related Disease is the current state of art to confirm the diagnosis of IgG4-RD even in the absence of histological analysis.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

The molar dose of FAPI administered impacts on the FAP-targeted PET imaging and therapy in mouse syngeneic tumor models.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.

Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.

View Article and Find Full Text PDF

Development of an image quality evaluation system for bedside chest X-ray images using scatter correction processing.

Radiol Phys Technol

January 2025

Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa, Tokyo, 116-8551, Japan.

In plain radiography, scattered X-ray correction processing (Virtual Grid: VG) is used to estimate and correct scattered rays in images. We developed an objective evaluation system for bedside chest X-ray images using VG and investigated its usefulness. First, we trained the blind/referenceless image spatial quality evaluator (BRISQUE) on 200 images obtained by portable chest radiography.

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!