Background: Optical coherence tomographic (OCT) morphologies associated with lesion progression are not well studied. The aim of this study was to determine the morphological change for untreated lesion progression using both OCT and intravascular ultrasound (IVUS).
Methods And Results: We used baseline and 8-month follow-up 3-vessel OCT and IVUS to assess 127 nonculprit lesions (IVUS plaque burden ≥40%) in 45 patients with stable angina after target lesion treatment. Lesion progression was defined as an IVUS lumen area decrease >0.5 mm. A layered pattern was identified as a superficial layer that had a different optical intensity and a clear demarcation from underlying plaque. Lesion progression was observed in 19% (24/127) lesions, and its pattern was characterized into 3 types: type I, new superficial layered pattern at follow-up that was not present at baseline (n=9); type II, a layered pattern at baseline whose layer thickness increased at follow-up (n=7); or type III, no layered pattern at baseline or follow-up (n=8). The increase of IVUS plaque+media area was largest in type I and least in type III (1.9 mm [1.6-2.1], 1.1 mm [0.9-1.4], and 0.3 mm [-0.2 to 0.8], respectively; =0.002). Type III, but not types I or II, showed negative remodeling during follow-up (IVUS vessel area; from 14.3 mm [11.4-17.2] to 13.5 mm [10.4-16.7]; =0.02). OCT lipidic plaque was associated with lesion progression (odds ratio, 13.6; 95% confidence interval, 3.7-50.6; <0.001).
Conclusions: Lesion progression was categorized to distinct OCT morphologies that were related to changes in plaque mass or vessel remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCIMAGING.117.006347 | DOI Listing |
Gastrointest Endosc
January 2025
Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX. Electronic address:
Background & Aims: Pancreatic cysts often pose challenges in predicting malignant progression. Next-generation sequencing has become an appealing ancillary diagnostic test. The diagnostic performance is well characterized, but the impact on clinical management remains unclear.
View Article and Find Full Text PDFUrology
January 2025
S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
Objectives: To evaluate the impact of Aquablation on circulating tumor cells (CTCs) in men with localized prostate cancer.
Methods: This prospective study included subjects with biopsy-positive mpMRI visible lesions (PIRADS ≥ 3) who underwent Aquablation. Ten ml blood samples were collected before, during and after the procedure to measure CTC counts using an immunofluorescence assay.
Comput Med Imaging Graph
December 2024
Nantes Université, Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France.
Diffuse Large B-cell Lymphoma (DLBCL) is a lymphatic cancer of steadily growing incidence. Its diagnostic and follow-up rely on the analysis of clinical biomarkers and 18F-Fluorodeoxyglucose (FDG)-PET/CT images. In this context, we target the problem of assisting in the early identification of high-risk DLBCL patients from both images and tabular clinical data.
View Article and Find Full Text PDFMicrobiol Res
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, India. Electronic address:
Bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae poses significant challenges to sustainable cultivation, necessitating eco-friendly management strategies, and this study explores the role of the phylloplane microbiome in disease suppression through metabarcoding, traditional microbiology, and antibacterial screening of microbial candidates. Here, we mapped the phylloplane microbiome of pomegranate cultivar 'Bhagwa' during bacterial blight development using metabarcoding sequencing (2443,834 reads), traditional microbiological methods (nutrient-rich and minimal media), and scanning electron microscopy.
View Article and Find Full Text PDFHealth Phys
January 2025
Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL.
Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!