The aim of this study was to prepare and characterize solid dispersion particles with a novel amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, as a water-soluble carrier. Solid dispersion particles were prepared by hot-melt extrusion and spray drying. Indomethacin (IMC) was used as a model comprising drugs with low solubility in water and d-mannitol (MAN) was used as an excipient. The physicochemical properties of prepared particles were characterized by scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, FTIR spectra analysis, and drug release studies. Stability studies were also conducted under stress conditions at 40°C, 75% relative humidity. We found that dissolution behavior of the original drug crystal could be improved by solid dispersion with the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer. The PXRD pattern and thermal analysis indicated that the solid dispersion prepared with the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and IMC was in an amorphous state. FTIR spectra analysis indicated that the interaction manner between the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and IMC may differ with the preparation method and formulation of solid dispersions. Stability studies proved that the amorphous state of IMC in solid dispersion particles was preserved under stress conditions for more than two weeks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2017.09.014DOI Listing

Publication Analysis

Top Keywords

solid dispersion
24
polyvinyl caprolactam-polyvinyl
20
caprolactam-polyvinyl acetate-polyethylene
20
acetate-polyethylene glycol
20
glycol graft
20
graft copolymer
20
dispersion particles
12
spray drying
8
hot-melt extrusion
8
amphiphilic polyvinyl
8

Similar Publications

Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.

View Article and Find Full Text PDF

In this study, the AlFeO@n-Pr@Et-SOH heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFeO@n-Pr@Et-SOH nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFeO@n-Pr@Et-SOH materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides.

View Article and Find Full Text PDF

Design and preparation of novel magnetic covalent organic framework for the simultaneous preconcentration and sensitive determination of six aflatoxins in food samples.

Food Chem

December 2024

Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China. Electronic address:

An innovative core-shell covalent organic framework (COF), FeO@COF (ETTBA-ND), was synthesized through a facile and energy-efficient method. This adsorbent facilitated magnetic solid phase extraction (MSPE) of six AFs prior to LC-MS/MS analysis, achieving one-step purification and enrichment in food matrices. The successful synthesis of the adsorbent was confirmed using various techniques, with adsorption capacities ranging from 46.

View Article and Find Full Text PDF

It is challenging to image structures in liquids for electron microscopy (EM); thus, low-temperature imaging has been developed, initially for aqueous systems. Organic liquids (OLs) are widely used as dispersants, although their cryogenic EM (cryo-EM) imaging is less common than that of aqueous systems. This is because the basic properties (e.

View Article and Find Full Text PDF

Fast response solid electrolyte oxygen sensors with porous thin film electrodes.

Rev Sci Instrum

January 2025

High Enthalpy Flow Diagnostics Group (HEFDiG), Institute of Space Systems, University of Stuttgart, Pfaffenwaldring 29, 70569 Stuttgart, Germany.

A novel solid electrolyte sensor with considerably improved response times is presented. The new so-called eFIPEX [etched flux (Φ) probe experiment] is based on the FIPEX [flux (Φ) probe experiment] sensor applied for the measurement of molecular and atomic oxygen concentrations. A main application is the measurement of atmospheric atomic oxygen aboard sounding rockets up to altitudes of 250 km.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!