The unique physical properties of the superparamagnetic nanoparticles (SPIONs) have made them candidates of choice in nanomedicine especially for diagnostic imaging, therapeutic applications and drug delivery based systems. In this study, superparamagnetic FeO NPs were synthesized and functionalized with a biocompatible thermoresponsive copolymer to obtain temperature responsive core/shell NPs. The ultimate goal of this work is to build a drug delivery system able to release anticancer drugs in the physiological temperatures range. The core/shell NPs were first synthesized and their chemical, physical, magnetic and thermo-responsive properties where fully characterized in a second step. The lower critical solution temperature (LCST) of the core/shell NPs was tuned in physiological media in order to release the cancer drug at a controlled temperature slightly above the body temperature to avoid any premature release of the drug. The core/shell NPs exhibiting the targeted LCST were then loaded with Doxurubicin (DOX) and the drug release properties were then studied with the temperature. Moreover the cytotoxicity tests have shown that the core/shell NPs had a very limited cytotoxicity up to concentration of 25μg/mL. This investigation showed that the significant release occurred at the targeted temperature in the physiological media making those nano-systems very promising for further use in drug delivery platform.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.09.019DOI Listing

Publication Analysis

Top Keywords

core/shell nps
20
drug delivery
16
applications drug
8
nps synthesized
8
physiological media
8
nps
7
drug
7
temperature
6
core/shell
5
release
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!