The recovery paradigm is a widely accepted strength-based approach in general mental health care. Particular challenges arise when applying this paradigm in a forensic context. To address these issues, the present study examined recovery based on first-person narratives of offenders formerly labeled as not criminally responsible of whom the judicial measure was abrogated. Eleven in-depth interviews were conducted to obtain information on lived experiences and recovery resources of this hard-to-reach and understudied population. The interviews focused on recovery and elements that indicated a sense of progress in life. Key themes were derived from the collected data. Descriptions of recovery resources followed recurrent themes, including clinical, functional, social, and personal resources. Participants also reported ambiguous experiences related to features of the judicial trajectory. This was defined as forensic recovery and can be seen as an additional mechanism, besides more established recovery dimensions, that is unique to mentally ill offenders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0306624X17730617 | DOI Listing |
Chembiochem
January 2025
University of Teramo: Universita degli Studi di Teramo, Veterinary Medicine, Piano d'Accio snc, 64100, Teramo, ITALY.
In this study, we employed a novel fluorescent probe, RO7304924-which selectively targets cannabinoid 2 receptor (CB2R)-to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.
View Article and Find Full Text PDFCell Adh Migr
December 2025
Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Medical Sciences, Institute of Neurology, Magna Græcia University, Catanzaro, Italy.
We aim to understand whether tremor may be an intrinsic feature of juvenile myoclonic epilepsy (JME) and whether individuals with JME plus tremor experience a different disease course. Thirty-one individuals with JME plus tremor (17 females, mean age = 33.9 ± 13.
View Article and Find Full Text PDFClin Interv Aging
January 2025
Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China.
Purpose: Shoulder arthroscopic repair of rotator cuff tears with simultaneous treatment of lesions of the long head of the biceps tendon has become increasingly accepted. However, the clinical outcomes between tenotomy and tenodesis remain unclear. This study aimed to compare the efficacy of tenotomy and tenodesis combined with rotator cuff repair in elderly patients with medium-to-massive rotator cuff tears.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!