Land surface temperature (LST) seems to be related to the temperature of shallow aquifers and the unsaturated zone thickness (∆Z). That relationship is valid when the study area fulfils certain characteristics: a) there should be no downward moisture fluxes in an unsaturated zone, b) the soil composition in terms of both, the different horizon materials and their corresponding thermal and hydraulic properties, must be as homogeneous and isotropic as possible, c) flat and regular topography, and d) steady state groundwater temperature with a spatially homogeneous temperature distribution. A night time Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image and temperature field measurements are used to test the validity of the relationship between LST and ∆Z at the Pampa del Tamarugal, which is located in the Atacama Desert (Chile) and meets the above required conditions. The results indicate that there is a relation between the land surface temperature and the unsaturated zone thickness in the study area. Moreover, the field measurements of soil temperature indicate that shallow aquifers dampen both the daily and the seasonal amplitude of the temperature oscillation generated by the local climate conditions. Despite empirically observing the relationship between the LST and ∆Z in the study zone, such a relationship cannot be applied to directly estimate ∆Z using temperatures from nighttime thermal satellite images. To this end, it is necessary to consider the soil thermal properties, the soil surface roughness and the unseen water and moisture fluxes (e.g., capillarity and evaporation) that typically occur in the subsurface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.08.305DOI Listing

Publication Analysis

Top Keywords

unsaturated zone
16
land surface
12
surface temperature
12
zone thickness
12
temperature
9
atacama desert
8
shallow aquifers
8
study area
8
moisture fluxes
8
field measurements
8

Similar Publications

Old but not ancient: Rock-leached organic carbon drives groundwater microbiomes.

Sci Total Environ

December 2024

Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena_Leipzig, Germany. Electronic address:

More than 90% of earth's microbial biomass resides in the continental subsurface, where sedimentary rocks provide the largest source of organic carbon (C). While many studies indicate microbial utilization of fossil C sources, the extent to which rock-organic C is driving microbial activities in aquifers remains largely unknown. Here we incubated oxic and anoxic groundwater with crushed carbonate rocks from the host aquifer and an outcrop rock of the unsaturated zone characterized by higher organic C content, and compared the natural abundance of radiocarbon (C) of available C pools and microbial biomarkers.

View Article and Find Full Text PDF

This investigation aimed to assess the in vitro and in silico biological properties of the ethyl acetate (EtOAc) extract obtained from leaves of Schott collected in Algeria. The phytochemical screening data disclosed that flavonoids, tannins, coumarins, saponins, and anthocyanins were abundant. High levels of total phenolics, total flavonoids and flavonols (523.

View Article and Find Full Text PDF

Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus.

Biology (Basel)

November 2024

State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery.

View Article and Find Full Text PDF

Experimental investigation on heat and moisture transfer of propylene glycol-mixed steam in porous media.

J Contam Hydrol

January 2025

State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China.. Electronic address:

Propylene glycol (PG)-mixed steam enhanced extraction is a promising remediation technique for removing semi-volatile organic compounds (SVOCs) from the unsaturated zone. However, the mechanisms of heat and moisture transfer during PG-mixed steam injection remain unclear. In this study, a 2D experimental system was developed to enable non-invasive monitoring of the spatio-temporal distribution of temperature and degree of saturation during steam injection into porous media.

View Article and Find Full Text PDF

Among emerging contaminants, per- and polyfluoroalkyl substances (PFAS) have captured public attention based upon their environmental ubiquity and potential risks to human health. Due to their typical surface release conditions and amphiphilic properties, PFAS tend to sorb to soil and accumulate at the air-water interface within the vadose zone. These processes can result in substantial plume attenuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!