Seizure self-prediction: Myth or missed opportunity?

Seizure

Institute of Neuroscience, Henry Wellcome Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom; Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Freeman Road, High Heaton, Newcastle upon Tyne, NE7 7DN, United Kingdom. Electronic address:

Published: October 2017

Purpose: Many patients report being able to predict their own seizures, and yet most seizures appear to strike out of the blue. This inherent contradiction makes the topic of seizure self-prediction controversial as well as difficult to study. Here we review the evidence for whether this ability exists, how many patients are capable of self-prediction and the nature of this capability, and whether this could provide a target for intervention.

Methods: Systematic searches of bibliographic databases including MEDLINE, EMBASE and PsycINFO through OVID were performed to identify relevant papers which were then screened by the study authors for inclusion in the study. 18 papers were selected for inclusion as the focus of this review.

Results: On the basis of two studies, between 17% and 41% of patients demonstrate a significantly greater than chance ability to predict an upcoming seizure in the following 12-h time window. This risk is correlated with self-reported anxiety, stress, sleep deprivation, mood and certain prodromal symptoms. However, there is no evidence for any subjective experience which directly heralds an imminent seizure. Thus, while patients may be aware of seizure risk, and have some ability to predict seizure occurrence over a wide time window, they are unable to subjectively recognise seizure onset in advance.

Conclusion: Utilising subjectively acquired knowledge of seizure risk may provide a widely implementable tool for targeted intervention. The risk fluctuates over a time course appropriate for pharmacotherapy which may improve seizure control and the side-effect profile of anti-epileptic medication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2017.08.011DOI Listing

Publication Analysis

Top Keywords

seizure
9
seizure self-prediction
8
ability predict
8
time window
8
seizure risk
8
self-prediction myth
4
myth missed
4
missed opportunity?
4
opportunity? purpose
4
patients
4

Similar Publications

Network hypersynchrony is emerging as an important system-level mechanism underlying seizures, as well as cognitive and behavioural impairments, in children with structural brain abnormalities. We investigated patterns of single neuron action potential behaviour in 206 neurons recorded from tubers, transmantle tails of tubers and normal looking cortex in 3 children with tuberous sclerosis. The patterns of neuronal firing on a neuron-by-neuron (autocorrelation) basis did not reveal any differences as a function of anatomy.

View Article and Find Full Text PDF

Background: Variants in the GABRA2 gene, which encodes the α2 subunit of the γ-aminobutyric acid A receptor, have been linked to a rare form of developmental and epileptic encephalopathy (DEE) referred to as DEE78. Only eight patients have been reported globally. This study presents the clinical presentation and genetic analysis of a Chinese family with a child diagnosed with DEE78, due to a novel GABRA2 variant.

View Article and Find Full Text PDF

Expanding molecular and clinical spectrum of CPT1C-associated hereditary spastic paraplegia (SPG73)-a case series.

Ann Clin Transl Neurol

December 2024

Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Autosomal-dominant variants in the CPT1C gene have been associated with hereditary spastic paraplegia type 73 (SPG73), which typically presents with slowly progressive lower limb weakness and spasticity and is therefore considered a pure form of hereditary spastic paraplegia. However, we report two unrelated males with novel CPT1C variants (NM_001199753.2: patient 1: c.

View Article and Find Full Text PDF

Objective: The 5xFAD mouse model of Alzheimer disease (AD) recapitulates amyloid-beta (Aβ) deposition and pronounced seizure susceptibility observed in patients with AD. Forty-hertz audiovisual stimulation is a noninvasive technique that entrains gamma neural oscillations and can reduce Aβ pathology and modulate glial expression in AD models. We hypothesized that 40-Hz sensory stimulation would improve seizure susceptibility in 5xFAD mice and this would be associated with reduction of plaques and modulation of glial phenotypes.

View Article and Find Full Text PDF

Introduction And State Of The Art: Systemic lupus erythematosus (SLE) is an autoimmune disease that affects many organs throughout its course, most frequently the joints, skin and kidneys. Both the central (CNS) and peripheral (PNS) nervous systems are also often affected. T he involvement of the CNS has a negative prognosis in lupus patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!