The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.08.004DOI Listing

Publication Analysis

Top Keywords

wax esters
16
esters microbial
16
microbial oils
16
novozyme 435
12
production wax
8
esters
8
microbial oil
8
waste by-product
8
by-product streams
8
conversion yields
8

Similar Publications

Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e.

View Article and Find Full Text PDF

Spent coffee grounds, the main by-product of the coffee-brewing process, were valorized as a renewable source of lipids for the synthesis of novel wax esters and as an alternative and sustainable oil-structuring agent for the production of oleogels. The lipase-catalyzed reactions were implemented using fatty alcohols both under solvent-free conditions and with limonene as an environmentally friendly solvent. Wax esters were evaluated for their ability to formulate olive oil oleogels through the determination of the physical properties of oleogels.

View Article and Find Full Text PDF

Identification of osmotic stress resistance mediated by in apple.

Front Plant Sci

December 2024

Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.

KAR (Karrikin), a novel plant growth regulator, can be recognized specifically by plants and can activate resistance responses. MdKAI2 is the natural receptor of KARs in apple. Here, we report the identification of osmotic stress resistance in via the method of genetic transformation.

View Article and Find Full Text PDF

Background: Biotechnologies that utilize microorganisms as production hosts for lipid synthesis will enable an efficient and sustainable solution to produce lipids, decreasing reliance on traditional routes for production (either petrochemical or plant-derived) and supporting a circular bioeconomy. To realize this goal, continuous biomanufacturing processes must be developed to maximize productivity and minimize costs compared to traditional batch fermentation processes.

Results: Here, we utilized biofilms of the marine bacterium, Marinobacter atlanticus, to produce wax esters from succinate (i.

View Article and Find Full Text PDF
Article Synopsis
  • BoORP3a is an oxysterol-binding protein in the endoplasmic reticulum that potentially plays a role in cuticular wax deposition in ornamental kale.
  • RNA sequencing revealed 223 differentially expressed genes (DEGs) between wild-type plants and those overexpressing BoORP3a, indicating significant metabolic pathway alterations related to lipid and wax synthesis.
  • The study suggests BoORP3a influences lipid metabolism, which could have important implications for breeding and improving ornamental kale.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!