Effector-Triggered Self-Replication in Coupled Subsystems.

Angew Chem Int Ed Engl

Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.

Published: November 2017

In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201707191DOI Listing

Publication Analysis

Top Keywords

building block
8
effector molecule
8
self-replication
5
effector-triggered self-replication
4
self-replication coupled
4
coupled subsystems
4
subsystems living
4
living systems
4
systems processes
4
processes genome
4

Similar Publications

Ni-Catalyzed Enantioselective Desymmetrization: Development of Divergent Acyl and Decarbonylative Cross-Coupling Reactions.

J Am Chem Soc

January 2025

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

Ni-catalyzed asymmetric reductive cross-coupling reactions provide rapid and modular access to enantioenriched building blocks from simple electrophile precursors. Reductive coupling reactions that can diverge through a common organometallic intermediate to two distinct families of enantioenriched products are particularly versatile but underdeveloped. Here, we describe the development of a bis(oxazoline) ligand that enables the desymmetrization of -anhydrides.

View Article and Find Full Text PDF

Platform chemicals from renewable resources with broad applications are highly desirable, particularly for replacing fossil-based monomers. Bifunctional aliphatic ester-aldehydes, accessible via regioselective hydroformylation of unsaturated oleochemicals, can be converted into linear ω-amino/ω-hydroxy esters and dicarboxylic acids-key building blocks for biobased aliphatic polycondensates. However, their success hinges on efficient, economically viable production, with catalyst recycling being critical.

View Article and Find Full Text PDF

A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.

View Article and Find Full Text PDF

Protein Fusion of Biosynthetic Enzymes and a Thermo-Responsive Polypeptide Expedites Facile Access to Biocatalysts for Nucleotide Sugars.

Chembiochem

January 2025

Shandong University - Qingdao Campus, National Glycoengineering Research Center, Room 230, Ganchang Yard F Block, Qingdao campus of Shandong University, 72 Binhai Road,, Jimo District, Qingdao, Shandong, 266237 China, 266237, Qingdao, CHINA.

Nucleotide sugars (NSs) are essential building blocks for the enzymatic assembly of glycans. In this study, we established a preparation and recycling avenue to the biocatalysts for the enzymatic synthesis of NSs. This approach involves fusing two enzymes into a bifunctional chimera and using elastin-like polypeptides (ET64) as a purification tag, which allows for easy recovery of these biocatalysts without the need for chromatography.

View Article and Find Full Text PDF

N-oxide-Functionalized Bipyridines as Strong Electron-Deficient Units to Construct High-Performance n-Type Conjugated Polymers.

Adv Sci (Weinh)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China.

Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!