Polymorphisms in the promoter of the BRM gene, a critical subunit of the chromatin remodeling SWI/SNF complex, have previously been implicated in risk and prognosis in Caucasian-predominant lung, head and neck, esophageal, and pancreatic cancers, and in hepatocellular cancers in Asians. We investigated the role of these polymorphisms in hepatocellular carcinoma (HCC) risk and prognosis. HCC cases were recruited in a comprehensive cancer center while the matched controls were recruited from family practice units from the same catchment area. For risk analyses, unconditional logistic regression analyses were performed in HCC patients and matched healthy controls. Overall survival analyses were performed using Cox proportional hazard models, Kaplan-Meier curves, and log-rank tests. In 266 HCC cases and 536 controls, no association between either BRM promoter polymorphism (BRM-741 or BRM-1321) and risk of HCC was identified (P > 0.10 for all comparisons). There was significant worsening of overall survival as the number of variant alleles increased: BRM-741 per variant allele adjusted hazards ratio (aHR) 5.77, 95% confidence interval (CI) 2.89-11.54 and BRM-1321 per variant allele aHR 4.09, 95%CI 2.22-7.51. The effects of these two polymorphisms were at least additive, where individuals who were double homozygotes for the variant alleles had a 45-fold increase in risk of death when compared to those who were double wild-type for the two polymorphisms. Two BRM promoter polymorphisms were strongly associated with HCC prognosis but were not associated with increased HCC susceptibility. The association was strongest in double homozygotes for the allele variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mc.22736 | DOI Listing |
Plant Physiol
December 2024
Institute of Biochemistry and Biophysics PAS, Warsaw 02-106, Poland.
The SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complex is involved in various aspects of plant development and stress responses. Here, we investigated the role of BRM (BRAHMA), a core catalytic subunit of the SWI/SNF complex, in Arabidopsis thaliana seed biology. brm-3 seeds exhibited enlarged size, reduced yield, increased longevity, and enhanced secondary dormancy, but did not show changes in primary dormancy or salt tolerance.
View Article and Find Full Text PDFElife
November 2024
Department of Genetics, and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, United States.
We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI.
View Article and Find Full Text PDFCell Rep
November 2024
Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA. Electronic address:
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc.
View Article and Find Full Text PDFACS Bio Med Chem Au
August 2024
Foghorn Therapeutics, 500 Technology Square, Suite 700, Cambridge, Massachusetts 02139, United States.
The BRG-/BRM-associated factor (BAF) chromatin remodeling complex is a central actor in transcription. One mechanism by which BAF affects gene expression is via its various histone mark readers, including double plant homeodomains (DPF), located in the BAF45D subunit. DPF domains recognize lysine acetyl and acylations, including crotonylation, localized at promoters and enhancers.
View Article and Find Full Text PDFPlant J
October 2024
Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!