A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biochemical approaches to assess oxidative stress induced by exposure to natural and synthetic dyes in early life stages in zebrafish. | LitMetric

Biochemical approaches to assess oxidative stress induced by exposure to natural and synthetic dyes in early life stages in zebrafish.

J Toxicol Environ Health A

a School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo, Ribeirão Preto , São Paulo , Brazil.

Published: December 2017

Zebrafish early life stages were found to be sensitive to several synthetic dyes widely used in industries. However, as environmental concentrations of such contaminants are often at sublethal levels, more sensitive methods are required to determine early-warning adverse consequences. The aim of this study was to utilize a multibiomarker approach to examine underlying oxidative stress mechanisms triggered by sublethal concentrations of synthetic azo dye Basic Red 51 (BR51), the natural dye erythrostominone (ERY), and its light-degraded product using zebrafish embryos. Biochemical biomarkers included parameters of detoxification and markers of antioxidant system, as well as oxidative damage. Results showed pro-oxidant mechanisms attributed to BR51 and ERY as evidenced by increased glutathione S-transferase (GST) activity, a phase II detoxification enzyme related to reactive oxygen species detoxification. BR51 also elevated total glutathione (GSH+GSSG) levels and catalase activity. However, both dyes induced oxidative damage as evidenced by elevated lipid peroxidation content. In contrast, when the natural dye was photodegraded, no marked effects were observed for all biomarkers assessed. Data indicate that such dyes are pro-oxidants at sublethal concentrations, predominantly involving GSH and/or related enzymes pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2017.1371091DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
synthetic dyes
8
early life
8
life stages
8
sublethal concentrations
8
natural dye
8
oxidative damage
8
biochemical approaches
4
approaches assess
4
oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!