Layered transition metal dichalcogenides are noble-metal free electrocatalysts for the hydrogen evolution reaction (HER). Instead of using the common hydrothermal synthesis, which requires high pressure and temperature, herein a relatively simple and controlled colloidal synthesis was used to produce an alloy of MoWSe with nanoflower morphology as a model system for the electrocatalysis of hydrogen evolution in both acidic and alkaline environments. The results show that MoWSe alloys exhibit better catalytic activity in both acidic and alkaline solutions with low overpotentials compared to pure MoSe and WSe. Moreover, the electrode kinetics was studied using electrochemical impedance spectroscopy (EIS) and the results indicate that the alloys exhibit improved catalytic activity with low Tafel slopes, making them appealing for HER in either environment. Additionally, when MoSe nanoflowers (NFs) are prepared by using different metal salts and chalcogenide precursors, changes in the HER catalytic activity were observed, despite the morphology and crystal structure similarities. This finding suggests that different results reported in the literature could originate from different synthetic methods of the TMD, emphasizing that a better understanding of the relationship between the synthetic route and the catalytic performance is still lacking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr04922f | DOI Listing |
Angew Chem Int Ed Engl
December 2024
University of Wisconsin-Madison, Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, UNITED STATES OF AMERICA.
In this study, we employed EC-MS to elucidate the role of halide anions in electrochemical CO2 and CO reduction. We found that the undesired hydrogen evolution reaction (HER) was significantly suppressed by the anion used. Specifically, the rates of H2 production decreased in the order KF > KCl > KI, meaning that I- most strongly suppressed HER.
View Article and Find Full Text PDFInorg Chem
December 2024
Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
Metal complexes with tunable ligands play a crucial role in olefin polymerization and impart control over molecular weight, crystallinity, and stereoregularity. We report the single-step synthesis of imine-phenoxy ligands in excellent yields (81-93%). The identity of electronically tuned imine-phenoxy ligands was unambiguously ascertained by using a combination of spectroscopic and analytical methods.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Chemistry, Columbia University, New York, New York, USA.
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, China.
Green and efficient total antioxidant capacity (TAC) detection is significant for healthy diet and disease prevention. This work first proposed the concept of TAC colorimetric detection based on microrobots. A novel metal-organic framework (MOF)-based biomimetic enzyme microrobot (MIL-88A@FeO) is developed that can efficiently and accurately detect the TAC of real fruits and vegetables.
View Article and Find Full Text PDFAdv Mater
December 2024
Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!