Semiconductor heterostructures have played a critical role as the enabler for new science and technology. The emergence of transition-metal dichalcogenides (TMDs) as atomically thin semiconductors has opened new frontiers in semiconductor heterostructures either by stacking different TMDs to form vertical heterojunctions or by stitching them laterally to form lateral heterojunctions via direct growth. In conventional semiconductor heterostructures, the design of multijunctions is critical to achieve carrier confinement. Analogously, successful synthesis of a monolayer WS /WS Se /WS multijunction lateral heterostructure via direct growth by chemical vapor deposition is reported. The grown structures are characterized by Raman, photoluminescence, and annular dark-field scanning transmission electron microscopy to determine their lateral compositional profile. More importantly, using microwave impedance microscopy, it is demonstrated that the local photoconductivity in the alloy region can be tailored and enhanced by two orders of magnitude over pure WS . Finite element analysis confirms that this effect is due to the carrier diffusion and confinement into the alloy region. This work exemplifies the technological potential of atomically thin lateral heterostructures in optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201703680DOI Listing

Publication Analysis

Top Keywords

semiconductor heterostructures
12
atomically thin
8
direct growth
8
alloy region
8
lateral
5
tailoring semiconductor
4
semiconductor lateral
4
lateral multijunctions
4
multijunctions giant
4
giant photoconductivity
4

Similar Publications

Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe/WSe form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs.

View Article and Find Full Text PDF

Construction of CuMoS/ZnO Heterostructures and Mechanism of Photocatalytic Hydrogen Production.

Langmuir

January 2025

Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.

Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.

View Article and Find Full Text PDF

High-performance van der Waals stacked transistors based on ultrathin GaPS dielectrics.

Nanoscale

January 2025

School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.

Article Synopsis
  • Exploring high-κ gate dielectrics is vital for enhancing the performance of field-effect transistors (FETs).
  • The study introduces few-layer gallium thiophosphate (GaPS) as a new semiconductor material with a dielectric constant of about 5.3, which can be easily obtained through mechanical exfoliation.
  • FETs using GaPS as the top-gate dielectric and MoS as the channel material demonstrated impressive performance metrics, indicating that GaPS could be a promising option for advancing two-dimensional electronic devices.
View Article and Find Full Text PDF

Ultrafast Laser-Induced Spin Dynamics in All-Semiconductor Ferromagnetic CrSBr-Phosphorene Heterostructures.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.

Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure.

View Article and Find Full Text PDF

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!