Structure and dynamics of complex systems are often described using weighted networks in which the position, weight and direction of links quantify how activity propagates between system elements, or nodes. Nodes with only few outgoing links of low weight have low out-strength and thus form bottlenecks that hinder propagation. It is currently not well understood how systems can overcome limits imposed by such bottlenecks. Here, we simulate activity cascades on weighted networks and show that, for any cascade length, activity initially propagates towards high out-strength nodes before terminating in low out-strength bottlenecks. Increasing the weights of links that are active early in the cascade further enhances already strong pathways, but worsens the bottlenecks thereby limiting accessibility to other pathways in the network. In contrast, strengthening only links that propagated the activity just prior to cascade termination, i.e. links that point into bottlenecks, eventually removes these bottlenecks and increases the accessibility of all paths on the network. This local adaptation rule simply relies on the relative timing to a global failure signal and allows systems to overcome engrained structure to adapt to new challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589341 | PMC |
http://dx.doi.org/10.1093/comnet/cnv002 | DOI Listing |
Biomed Phys Eng Express
January 2025
Shandong University of Traditional Chinese Medicine, Qingdao Academy of Chinese Medical Sciences, Jinan, Shandong, 250355, CHINA.
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical College, Shanghai, China.
Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.
View Article and Find Full Text PDFOptom Vis Sci
January 2025
Johnson & Johnson MedTech (Vision), Irvine, California.
Significance: Optimal meibography utilization and interpretation are hindered due to poor lid presentation, blurry images, or image artifacts and the challenges of applying clinical grading scales. These results, using the largest image dataset analyzed to date, demonstrate development of algorithms that provide standardized, real-time inference that addresses all of these limitations.
Purpose: This study aimed to develop and validate an algorithmic pipeline to automate and standardize meibomian gland absence assessment and interpretation.
Biopolymers
January 2025
School of Pharmacy and Bioengineering, Keele University, Keele, UK.
Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!