Motor neurons in amyotrophic lateral sclerosis (ALS) patients and animal models show degeneration from the nerve terminal, known as dying-back neuropathy. To investigate the mechanism underlying this neuropathy, we analyzed the neuromuscular junctions (NMJs) and motor neuron cell bodies in SOD1 mice using electron microscopy. NMJs of SOD1 mice exhibited significantly higher numbers of autophagosomes and degenerated mitochondria compared to wild-type controls. Mitophagosomes were identified in the NMJ presynaptic terminals of wild-type mice and SOD1 mice. However, the number of mitophagosomes did not increase significantly in SOD1 NMJs indicating a defect in mitophagy, the autophagic process to degrade mitochondria. Consistent with this, proteins essential for mitophagy, p62/SQSTM1, Bnip3, Pink1, and Parkin were down-regulated in motor neurons in SOD1 mice. Importantly, SQSTM1 is one of the genes mutated in familial ALS patients. We evaluated the effect of impaired mitophagy on motor neurons by analyzing the double knockout mice of Pink1 and Parkin, two genes responsible for sensing depolarized mitochondria and delivering degenerated mitochondria to mitophagosomes. The double knockout mice exhibited NMJ degeneration, including axon swelling and NMJ fragmentation at 4 months of age. These phenotypes were rarely observed in wild-type control mice of the same age. The protein level of ATP synthase β subunit increased in the NMJ presynaptic terminals, suggesting the accumulation of mitochondria at NMJs of the double knockout mice. Importantly, NMJ denervation was observed in the double knockout mice. These data suggest that the reduced mitophagy function in motor neurons of SOD1 mice is one of the mechanisms causing degeneration of ALS NMJs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575151PMC
http://dx.doi.org/10.3389/fnins.2017.00473DOI Listing

Publication Analysis

Top Keywords

sod1 mice
20
motor neurons
16
double knockout
16
knockout mice
16
mice
12
impaired mitophagy
8
neuromuscular junctions
8
als patients
8
mice exhibited
8
degenerated mitochondria
8

Similar Publications

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

This study aimed to investigate the effects of β-glucan derived from Euglena gracilis (EGB), an edible microalga, on particulate matter (PM)-induced airway inflammation in A549 cells and BALB/c mice. EGB effectively suppressed the mRNA and protein levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-8) and mediators (iNOS, COX-2), while inhibiting the NF-κB and MAPK signaling pathways triggered by PM exposure and reducing nuclear NF-κB levels. Additionally, EGB decreased PM-induced ROS production and increased the protein levels of NRF2 and HO-1, along with genes encoding antioxidant enzymes (catalase, GPx, SOD1), associated with elevated nuclear NRF2 levels.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

Inflammatory mediators tumor necrosis factor (TNF) and interleukin 1 beta (IL1β), primarily derived from hepatic macrophages in the liver, play a crucial role in the progression of nonalcoholic steatohepatitis (NASH). Meanwhile, intravenously injected exosomes are mainly distributed in the liver and predominantly taken up by hepatic macrophage. Herein, we aimed to evaluate the feasibility of targeted inhibition of TNF and IL1β expression in hepatic macrophages via exosomes as a potential therapeutic strategy for NASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!