Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ligand exchange reactions of a monomeric zirconium carbonate complex with carboxylic acids were studied by means of extended X-ray absorption fine structure (EXAFS), UV absorption spectrophotometry and Raman spectrometry. Three carboxylic acids, gluconic acid, and L-tartaric acid and citric acid, which are mono-, di- and tri-carboxylic acids, respectively, were employed in this study. These three carboxylic acids gave different spectral signatures and concentration dependences, respectively. In the gluconic acid system, the peaks on Fourier transform of EXAFS spectrum and Raman spectrum caused by carbonate ion coordinating to zirconium atom were obviously decreased with increasing gluconic acid concentration compared to the other two carboxylic acid systems. This indicates the high association ability of gluconic acid to zirconium, which was revealed by UV spectrophotometric analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.33.1007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!