Novel Organelles with Elements of Bacterial and Eukaryotic Secretion Systems Weaponize Parasites of Drosophila.

Curr Biol

Biology, The City College of New York, Convent Avenue, New York, NY 10031, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA. Electronic address:

Published: September 2017

The evolutionary success of parasitoid wasps, a highly diverse group of insects widely used in biocontrol, depends on a variety of life history strategies in conflict with those of their hosts [1]. Drosophila melanogaster is a natural host of parasitic wasps of the genus Leptopilina. Attack by L. boulardi (Lb), a specialist wasp to flies of the melanogaster group, activates NF-κB-mediated humoral and cellular immunity. Inflammatory blood cells mobilize and encapsulate Lb eggs and embryos [2-5]. L. heterotoma (Lh), a generalist wasp, kills larval blood cells and actively suppresses immune responses. Spiked virus-like particles (VLPs) in wasp venom have clearly been linked to wasps' successful parasitism of Drosophila [6], but the composition of VLPs and their biotic nature have remained mysterious. Our proteomics studies reveal that VLPs lack viral coat proteins but possess a pharmacopoeia of (1) the eukaryotic vesicular transport system, (2) immunity, and (3) previously unknown proteins. These novel proteins distinguish Lh from Lb VLPs; notably, some proteins specific to Lh VLPs possess sequence similarities with bacterial secretion system proteins. Structure-informed analyses of an abundant Lh VLP surface and spike-tip protein, p40, reveal similarities to the needle-tip invasin proteins SipD and IpaD of Gram-negative bacterial type-3 secretion systems that breach immune barriers and deliver virulence factors into mammalian cells. Our studies suggest that Lh VLPs represent a new class of extracellular organelles and share pathways for protein delivery with both eukaryotic microvesicles and bacterial surface secretion systems. Given their mixed prokaryotic and eukaryotic properties, we propose the term mixed-strategy extracellular vesicle (MSEV) to replace VLP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659752PMC
http://dx.doi.org/10.1016/j.cub.2017.08.019DOI Listing

Publication Analysis

Top Keywords

secretion systems
12
blood cells
8
vlps
6
proteins
6
novel organelles
4
organelles elements
4
bacterial
4
elements bacterial
4
eukaryotic
4
bacterial eukaryotic
4

Similar Publications

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Decoding the role of ghrelin and its interactions with central signaling pathways in avian appetite regulation.

Vet Res Commun

January 2025

Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions.

View Article and Find Full Text PDF

A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.

View Article and Find Full Text PDF

An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.

View Article and Find Full Text PDF

Background: Haemorrhagic shock is the leading cause of preventable death among trauma patients. Early detection of severe haemorrhage is essential for initiating timely resuscitation and mobilizing resources for massive transfusion (MT) protocols and damage control procedures. This study aimed to assess the predictive value of prehospital haemoglobin (Hb) levels for the need for transfusion at admission, the presence of haemorrhagic shock (HS), and the necessity for MT or haemostatic surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!