Background: Higher dietary salt intake increases the risk of stroke and may increase white matter hyperintensity (WMH) volume. We hypothesized that a long-term higher salt intake may be associated with other features of small vessel disease (SVD).

Methods: We recruited consecutive patients with mild stroke presenting to the Lothian regional stroke service. We performed brain magnetic resonance imaging, obtained a basic dietary salt history, and measured the urinary sodium/creatinine ratio. We also carried out a systematic review to put the study in the context of other studies in the field.

Results: We recruited 250 patients, 112 with lacunar stroke and 138 with cortical stroke, with a median age of 67.5 years. After adjustment for risk factors, including age and hypertension, patients who had not reduced their salt intake in the long term were more likely to have lacunar stroke (odds ratio [OR], 1.90; 95% confidence interval [CI], 1.10-3.29), lacune(s) (OR, 2.06; 95% CI, 1.09-3.99), microbleed(s) (OR, 3.4; 95% CI, 1.54, 8.21), severe WMHs (OR, 2.45; 95% CI 1.34-4.57), and worse SVD scores (OR, 2.17; 95% CI, 1.22-3.9). There was limited association between SVD and current salt intake or urinary sodium/creatinine ratio. Our systematic review found no previously published studies of dietary salt and SVD.

Conclusion: The association between dietary salt and background SVD is a promising indication of a potential neglected contributory factor for SVD. These results should be replicated in larger, long-term studies using the recognized gold-standard measures of dietary sodium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711036PMC
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.004DOI Listing

Publication Analysis

Top Keywords

dietary salt
20
salt intake
20
systematic review
12
small vessel
8
vessel disease
8
salt
8
urinary sodium/creatinine
8
sodium/creatinine ratio
8
lacunar stroke
8
dietary
6

Similar Publications

Integrating 16S rRNA Gene Sequencing and Metabolomics Analysis to Reveal the Mechanism of L-Proline in Preventing Autism-like Behavior in Mice.

Nutrients

January 2025

Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Background/objectives: Autism spectrum disorder (ASD) is characterized by impaired social interaction and repetitive stereotyped behavior. Effective interventions for the core autistic symptoms are currently limited.

Methods: This study employed a valproic acid (VPA)-induced mouse model of ASD to assess the preventative effects of L-proline supplementation on ASD-like behaviors.

View Article and Find Full Text PDF

Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt.

View Article and Find Full Text PDF

Tau Pathology Drives Disease-Associated Astrocyte Reactivity in Salt-Induced Neurodegeneration.

Adv Sci (Weinh)

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.

View Article and Find Full Text PDF

Exploring the Role of Salt Supplementation on Milk Composition, Fatty Acids, and Insulin Response in Lactating Camels.

Vet Sci

January 2025

Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.

Camel milk is a valuable food source with unique nutritional properties and potential health benefits. This study investigated the influence of high dietary salt on milk composition and fatty acid (FA) profile as well as insulin regulation in dairy camels. Twelve multiparous female camels were used in a crossover design with two treatments: control concentrate (CON; 1.

View Article and Find Full Text PDF

Fabrication and saltiness enhancement of salt hollow particles by interface migration.

Food Res Int

February 2025

National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!