Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme in the C photosynthetic pathway of many of the world's worst weeds and a valuable target to develop C plant-selective herbicides. By virtual screening, analog synthesis, and in vitro validation, we identified pyrazolidine-3,5-diones as a new class of small molecules with inhibitory potential down to the submicromolar range against C PEPC and a selectivity factor of up to 16 over C PEPC. No other biological activity has yet been reported for the best compound, (3-bromophenyl)-4-(3-hydroxybenzylidene)-pyrazolidine-3,5-dione. A systematic variation in the substituents allowed the derivation of a qualitative structure-activity relationship. These findings make this compound class highly interesting for further investigations toward generating potent, C plant-selective herbicides with a low potential for unwanted effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.12842DOI Listing

Publication Analysis

Top Keywords

phosphoenolpyruvate carboxylase
8
plant-selective herbicides
8
pyrazolidine-35-dione-based inhibitors
4
inhibitors phosphoenolpyruvate
4
carboxylase class
4
class potential
4
potential plant
4
plant herbicides
4
herbicides phosphoenolpyruvate
4
carboxylase pepc
4

Similar Publications

Metabolic Engineering of for Efficient Production of Ectoine.

J Agric Food Chem

December 2024

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .

View Article and Find Full Text PDF

Agroforestry intercropping is an effective way to optimize land use and ensure food security. However, the physiological mechanism by which the shading of dominant plants inhibits the yield of non-dominant plants in this mode remains to be investigated. A two-year location experiment of walnut-winter wheat intercrop combined with exogenous 6-benzyladenine (6-BA, the first synthetic cytokinin) treatment was conducted to reveal the mechanism of 6-BA in inhibiting wheat growth and yield formation under shade stress by measuring the photosynthetic characteristics, antioxidant capacity, hormone homeostasis of wheat flag leaves and yield.

View Article and Find Full Text PDF

Chronic heat stress is capable of reducing the growth performance, causing damage to the liver structure, and altering the liver glucose metabolism and lipid metabolism in largemouth bass (Micropterus salmoides L.).

Fish Physiol Biochem

February 2025

Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.

High temperatures cause abnormal energy metabolism and inhibit the growth of fish in aquaculture. However, the mechanism of energy metabolism under chronic heat stress is still unknown. In this study, largemouth bass (Micropterus salmoides, LMB) was treated with 25℃, 29℃, and 33℃ for 8 weeks.

View Article and Find Full Text PDF

The induction of polyamines metabolism pathway and membrane stability with silicon alleviate the vanadium toxicity in pepper plants.

J Hazard Mater

November 2024

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China. Electronic address:

The vanadium (V) toxicity predominantly is the primary limitation in restraining pepper growth. The silicon (Si) in pepper plants induced the transcript level of the polyamines metabolism pathway genes, including the arginase (CbARG), ornithine decarboxylase (CbODC), arginine decarboxylase (CbADC), N-carbamoylputrescine amidase (CbNCA), Spermidine synthase (CbSPDS), copper binding diamine oxidase (CbCuAO) to overcome the V toxicity. The polyamines, including the Spm, Spd, and Put, induced with Si about 41.

View Article and Find Full Text PDF
Article Synopsis
  • Panax ginseng, a commonly used herbal medicine in Asia, relies on its roots and rhizomes, which contain ginsenosides, the main active compounds that enhance its adaptability to ecological stress.
  • A study involved applying water spray to create a short-term water stress scenario for 5-year-old P. ginseng roots, revealing significant increases in oxidative stress indicators and enzyme activities linked to ginsenoside production.
  • The water stress treatment resulted in notable boosts in various ginsenosides (e.g., Rg1 and Rb1) and a 40.1% increase in total saponins, highlighting the potential for water management to enhance the medicinal properties of P. ginseng.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!